Tìm số nhỏ nhất khác 0 trong tập BC(6; 9).
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
- Ta có: B(6) = {0; 6; 12; 18; 29; 30; 36; 42; 48;.. }
B(8) = {0; 8; 16; 24; 32; 40; 48;..}
=> BC(6, 8) = {0; 24; 48;...}
Vậy số nhỏ nhất khác 0 trong tập hợp BC(6, 8) là 24
* Nhận xét: Số nhỏ nhất khác 0 trong tập hợp bội chung của hai số 6, 8 là ước của các bội chung của 6 và 8.
- Ta có: B(3) = {0; 3; 6; 9; 12; 15; 18; 21; 24; 27; 30; 33; 36; 39;… }
B(4) = {0; 4; 8; 12; 16; 20; 24; 38; 32; 36; 40; 44; 48; 52;...}
B(8) = {0; 8; 16; 24; 32; 40; 48;...}
=> BC(3, 4, 8) = {0; 24; 48;...}
Vậy số nhỏ nhất khác 0 trong tập hợp BC(3, 4, 8) là 24.
* Nhận xét: Số nhỏ nhất khác 0 trong tập hợp bội chung của ba số 3, 4, 8 là ước của các bội chung của 3, 4, 8.
c) x ⋮ 2; x ⋮ 7; x ⋮ 35
⇒ x ∈ BC(2; 7; 35)
Ta có:
2 = 2
7 = 7
35 = 5.7
⇒ BCNN(2; 7; 35) = 2.5.7 = 70
⇒ x ∈ BC(2; 7; 35) = B(70) = {0; 70; 140; 210; ...}
Mà 100 ≤ x ≤ 200
x = 140
b) Do x ∈ BC(21; 35; 99) và x nhỏ nhất, x ≠ 0 nên x = BCNN(21; 35; 99)
Ta có:
21 = 3.7
35 = 5.7
99 = 3².11
⇒ x = BCNN(21; 35; 99) = 3².5.7.11 = 3465
e) Do x nhỏ nhất, x ≠ 0; x ⋮ 12; x ⋮ 15; x ⋮ 20
⇒ x = BCNN(12; 15; 20)
Ta có:
12 = 2².3
15 = 3.5
20 = 2².5
⇒ x = BCNN(12; 15; 20) = 2².3.5 = 60
a, Ta có: 8 = 2 3 ; 10 = 2.5
BCNN(8; 10) = 2 3 .5 = 40
BC(8; 10) =B(40)= { 0; 40; 80; 120;………}
b, Ta có: 6 =2.3; 24= 2 3 . 3; 40 = 2 3 .5
BCNN( 6; 24; 40) = 2 3 .3. 5= 120
BC( 6; 24; 40)= B(120) ={ 0; 120; 240; 360….}
c, Ta có: 8 = 2 3 ; 15 = 3.5; 20 = 2 2 .5
BCNN(8; 15;20) = 2 3 .3.5 = 120
BC( 8; 15; 20)= B(120) ={ 0; 120; 240; 360….}
d, Ta có: 30 = 2.3.5; 45 = 3 2 .5
BCNN(30; 45) = 2. 3 2 .5 = 90
BC (30; 45) và nhỏ hơn 500 = { 0; 90; 180; 270; 360;480}
e, Ta có: a nhỏ nhất khác 0, biết rằng a ⋮ 15 và a ⋮ 18
=> a = BCNN (15; 18)
Có: 15 = 3.5; 18 = 2. 3 2
BCNN(15; 18) = 2. 3 2 .5 = 90
Vậy a = 90
f, Ta có: 63 = 3 2 .7; 35 = 5.7; 105 = 3.5.7
BCNN(63; 35; 105) = 3 2 .5.7 = 315
BC(63; 35; 105) và nhỏ hơn 1000 = { 0; 315; 630; 945}
a, Ta có: 8 = 2 3 ; 10 = 2.5
BCNN(8; 10) = 2 3 .5 = 40
BC(8; 10) =B(40)= { 0; 40; 80; 120;………}
b, Ta có: 6 =2.3; 24= 2 3 . 3; 40 = 2 3 .5
BCNN( 6; 24; 40) = 2 3 .3. 5= 120
BC( 6; 24; 40)= B(120) ={ 0; 120; 240; 360….}
c, Ta có: 8 = 2 3 ; 15 = 3.5; 20 = 2 2 .5
BCNN(8; 15;20) = 2 3 .3.5 = 120
BC( 8; 15; 20)= B(120) ={ 0; 120; 240; 360….}
d, Ta có: 30 = 2.3.5; 45 = 3 2 .5
BCNN(30; 45) = 2. 3 2 .5 = 90
BC (30; 45) và nhỏ hơn 500 = { 0; 90; 180; 270; 360;480}
e, Ta có: a nhỏ nhất khác 0, biết rằng a ⋮ 15 và a ⋮ 18
=> a = BCNN (15; 18)
Có: 15 = 3.5; 18 = 2. 3 2
BCNN(15; 18) = 2. 3 2 .5 = 90
Vậy a = 90
f, Ta có: 63 = 3 2 .7; 35 = 5.7; 105 = 3.5.7
BCNN(63; 35; 105) = 3 2 .5.7 = 315
BC(63; 35; 105) và nhỏ hơn 1000 = { 0; 315; 630; 945}
Ta có: BC(6; 9) = {0; 18; 36; 54, ...}
Số nhỏ nhất khác 0 trong tập BC(6; 9) là 18.
Ta có: BC(6; 9) = {0; 18; 36; 54, ...}
Số nhỏ nhất khác 0 trong tập BC(6; 9) là 18.