Cho tam giác ABC vuông tại A. Từ một điểm K bất kì thuộc cạnh BC vẽ KH \(\perp\) AC. Trên tia đối của tia HK lấy điểm I sao cho HI = HK. Chứng minh :
a ) AB // HK
b ) \(\Delta AKI\) cân.
c ) \(\widehat{BAK}\) = \(\widehat{AIK}\)
d ) \(\Delta AIC=\Delta AKC\)
a: Ta co: HK\(\perp\)AC
AB vuông góc với AC
Do đó: HK//AB
b: Xét ΔAKI có
AH là đường cao
AH là đường trung tuyến
Do đó: ΔAKI cân tại A
d: Xét ΔAIC và ΔAKC có
AI=AK
góc IAC=góc KAC
AC chung
Do đó: ΔAIC=ΔAKC