Tìm stn nhỏ nhất có 3 chữ số khi chia cho 11 dư 5, chia cho 13 dư 8
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a chia 11 dư 5 ⇔ a = 11m + 5 ⇒ a + 6 = ﴾11m + 5 ﴿+ 6 = 11m + 11 = 11.﴾m + 1﴿ chia hết cho 11. ﴾m ∈ N﴿
Vì 77 chia hết cho 11 nên ﴾a + 6﴿ + 77 cũng chia hết cho 11 ⇔ a + 83 chia hết cho 11. (1)
a chia 13 dư 8 ⇔ a = 13n + 8 ⇒ a + 5 = ﴾13n + 8﴿ + 5 = 13n + 13 = 13.﴾n + 1﴿ chia hết cho 11. ﴾n ∈ N﴿
Vì 78 chia hết cho 13 nên ﴾a + 5﴿ + 78 cũng chia hết cho 13 ⇔ a + 83 chia hết cho 13. (2)
Từ (1) và (2) suy ra a + 83 chia hết cho BCNN﴾11; 13﴿ ⇔ a + 83 chia hết cho 143 ⇒ a = 143k ‐ 83 ﴾k ∈ N*﴿
Để a nhỏ nhất có 3 chữ số ta chọn k = 2. Khi đó a = 203
gọi snt nhỏ nhất cần tìm là a ( a thuộc N*)
vì khi chia a cho 11 dư 5
=> a chia hết cho 11- 5
=> a thuộc B( 6)
vì a chia 13 dư 8
=> a chia hết cho 13 - 8
=> a thuộc B( 5)
=> a thuộc Bc( 5;6)
vì 5 ; 6 là 2 snt cùng nhau
=> BC(5;6)= { 0; 30; 60;120;...}
mà a là snt nhỏ nhất có 3 cs
=> a= 120
vậy.....
Vì a nhỏ nhất => a+ 6 nhỏ nhất
Theo bài ra => a+ 6 chia hết cho 11; a+ 6 chia hết cho 13; a+ 6 nhỏ nhất => a+ 6 là BCNN (11; 13)
11= 11; 13= 13
BCNN (11; 13)= 11. 13= 143
=> a+ 6= 143 => a= 137
Vậy => a= 137
Gọi số tự nhiên nhỏ nhất có 3 chữ sốcần tìm là a
Tao có: + a : 11 dư 5 => a=11m+5 => a+6=(11m+5)+6 = 11m+11=11(m+1) \(⋮\)11 (\(m\in N\))
Vì 77 \(⋮\)11 => (a+6)+77 \(⋮\)11 => (a+83) \(⋮\)11 (1)
+ a : 13 dư 8 => a=13n+8 => a+5=(13n+8)+5 = 13n+13=13(n+1) \(⋮\)11 (\(n\in N\))
Vì 78 \(⋮\)13 => (a+5)+78 \(⋮\)13 => (a+83) \(⋮\)13 (2)
Từ (1) & (2) => a+83 \(⋮\)BCNN(11;13) => a+83 \(⋮\)143 => a=143k-83 (k \(\in\)N*)
Để a đạt giá trị nhỏ nhất ta chọn : k=2 => 143.2-83=203
Vậy a=203