cho đa thức f(x) thỏa mãn (x-1).f(x)=(x+4).f(x+8) với mọi x thuộc R
Giải chi tiếp giùm mình
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Theo đề ra. ta có: f(x)+x.f(-x)=x+1
*) Xét x= -1 => f(-1)-f(1)=0 => f(-1)=f(1) (1)
*) Xét x=1 => f(1)+(-1)= 2 (2)
Từ 1 và 2 => f(1)=2:2=1
Với x=-1 =>f(-1)-f(1)=0 (1)
Với x=1 =>f(1)+f(-1)=2 (2)
Lấy 2 vế (1) trừ 2 vế (2) ta được: -2f(1)=-2=>f(1)=1
ta có:(x-1).f(x)=(x+4).f(x+8) với mọi x. (*)
=>(*) đúng với giá trị x=1
Với x=1 thay vào (*) ta được (1-1).f(1)=(1+4).f(1+8)
=> 0.f(1)=5.f(9) =>f(9)=0
=> x=9 là 1 nghiệm của f(x)
Thay f(9)=0 vào (*) ta được
(9-1).f(9)=(9+4).f(9+8) => 8.f(9)=13.f(17)
=>8.0=13.f(17) => 0=13.f(17)
=> f(17)=0
=>17 là 1 nghiệm của f(x)
vậy có ít nhất 1 nghiệm là số nguyên tố
tk mk nha bn
*****Chúc bạn học giỏi*****
a) x^4 + 2^3-x -2
=x^4 - x^3 + 3x^3 - 3x^2 + 3x^2 - 3x + 2x-2
=x^3.(x-1) + 3x^2.(x-1) + 3x.(x-1)+2.(x-1)
=(x-1).( x^3+ 3x^2 + 3x+2)
=(X+1).(X^3 + 2X^2 + X^2 +2X +X+2)
=(X+1).(X+2).(X^2 +X + 1)
Bạn phải hỏi phần đại chứ sao lại vô phần hình