bài 1 : Chứng minh rằng:
a) 1/101+1/102+....+1/199+ 1/200 < 1
b)1+1/2+1/3+...+1/32 > 3
Giúp mk với
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
cái này dễ lắm chỉ là chưa để ý thôi:
a,1/101>1/102>...>1/199>1/200
=>1/101+1/102+...+1/199+1/200<100*1/101=100/101<1
các phần khác làm tương tự
đánh mỏi tay quá duyệt luôn đi
a/ P=1-1/2+1/3-1/4+....+1/199-1/200
= 1+1/2+1/3+1/4+1/5+...+1/200 - 2.(1/2+1/4+...+1/200)
= 1+1/2+1/3+1/4+1/5+...+1/200 - 1-1/2-1/3-...-1/100
=1/101+1/102+...+1/200
b/ k-k/2+ k/3- k/4+...+k/199-k/200
=k+k/2+k/2+...+k/199+k/200 -2(k/2+k/4+k/6+...+k/200)
=k+k/2+k/2+...+k/199+k/200-k-k/2-k/3-...-k/100
=k/101+k/102+...+k.200
\(1-\frac{1}{2}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{199}-\frac{1}{200}\)
\(=\left(1+\frac{1}{3}+...+\frac{1}{199}\right)-\left(\frac{1}{2}+\frac{1}{4}+...+\frac{1}{200}\right)\)
\(=\left(1+\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+...+\frac{1}{199}+\frac{1}{200}\right)-2.\left(\frac{1}{2}+\frac{1}{4}+...+\frac{1}{200}\right)\)
\(=\left(1+\frac{1}{2}+\frac{1}{3}+...+\frac{1}{200}\right)-\left(1+\frac{1}{2}+\frac{1}{4}+...+\frac{1}{100}\right)\)
\(=\frac{1}{101}+\frac{1}{102}+...+\frac{1}{200}\)( đpcm )
a/P=1-1/2+1/3-1/4+1/5-1/6+...+1/199-1/200
=(1+1/3+1/5+1/7+...+1/199)-(1/2+1/4+1/6+...+1/200)
=(1+1/2+1/3+1/4+1/5+1/6+...+1/99+1/200)-2(1/2+1/4+1/6+...+1/200)
=(1+1/2+1/3+1/4+1/5+1/6+...+1/99+1/200)-(1+1/2+1/3+...+1/100)
=1/101+1/102+1/103+...+1/200
\(VT=\left(1+\frac{1}{3}+\frac{1}{5}+...+\frac{1}{199}\right)-\left(\frac{1}{2}+\frac{1}{4}+\frac{1}{6}+...+\frac{1}{200}\right)\)
\(VT=\left(1+\frac{1}{3}+\frac{1}{5}+...+\frac{1}{199}\right)+\left(\frac{1}{2}+\frac{1}{4}+\frac{1}{6}+...+\frac{1}{200}\right)-2.\left(\frac{1}{2}+\frac{1}{4}+\frac{1}{6}+...+\frac{1}{200}\right)\)
\(VT=\left(1+\frac{1}{3}+\frac{1}{5}+...+\frac{1}{199}+\frac{1}{2}+\frac{1}{4}+\frac{1}{6}+...+\frac{1}{200}\right)-\left(1+\frac{1}{2}+\frac{1}{3}+...+\frac{1}{100}\right)\)
\(VT=\left(1+\frac{1}{2}+\frac{1}{3}+...+\frac{1}{100}+\frac{1}{101}+\frac{1}{102}+...+\frac{1}{200}\right)-\left(1+\frac{1}{2}+\frac{1}{3}+...+\frac{1}{100}\right)\)
\(VT=\frac{1}{101}+\frac{1}{102}+...+\frac{1}{200}=VP\)=> ĐPCM
\(1-\frac{1}{2}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{199}-\frac{1}{200}\)
\(=1+\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+...+\frac{1}{199}+\frac{1}{200}-2\left(\frac{1}{2}+\frac{1}{4}+...+\frac{1}{200}\right)\)
\(=1+\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+...+\frac{1}{199}+\frac{1}{200}-\left(1+\frac{1}{2}+\frac{1}{3}+...+\frac{1}{100}\right)\)
\(=\frac{1}{101}+\frac{1}{102}+...+\frac{1}{200}\left(\text{đ}pcm\right)\)
Làm ơn giải giúp mình nhanh nhanh nhé, mình đang cần gấp, ai giải được mình k cho
Cho A = 1/2 .3/4.5/6.....199/200.Chứng tỏ rằng B mũ 2 <1/201.Bạn có làm dược ko ?