K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

Sửa đề: Qua D, kẻ DE vuông góc với AC tại E

b: Ta có: \(\widehat{BAD}+\widehat{CAD}=90^0\)

\(\widehat{BDA}+\widehat{HAD}=90^0\)

mà \(\widehat{BAD}=\widehat{BDA}\)

nên \(\widehat{CAD}=\widehat{HAD}\)

hay AD là phân giác của góc HAC

d: \(\left(AB+AC\right)^2-\left(BC+AH\right)^2\)

\(=AB^2+AC^2+2\cdot AB\cdot AC-BC^2-2\cdot BC\cdot AH-AH^2\)

\(=\left(AB^2+AC^2-BC^2\right)+\left(2\cdot AB\cdot AC-2\cdot BC\cdot AH\right)-AH^2\)

\(=-AH^2< 0\)

=>AB+AC<BC+AH

e: Xét ΔAHC có AD là phân giác

nên HD/AH=DC/AC

mà AH<AC

nên HD<DC

9 tháng 8 2020

a) ΔABDΔABD cân tại A => BADˆ=BDAˆBAD^=BDA^ (t/c tam giác cân)

Lại có: BADˆ+DAEˆ=BACˆ=90oBAD^+DAE^=BAC^=90o

BDAˆ+ADEˆ=BDEˆ=90oBDA^+ADE^=BDE^=90o

Do đó, DAEˆ=ADEˆDAE^=ADE^

=> ΔADEΔADE cân tại E (dấu hiệu nhận biết tam giác cân)

=> AE = ED (t/c tam giác cân) (đpcm)

a) Có: AH // ED (cùng ⊥BC⊥BC)
=> HADˆ=ADEˆHAD^=ADE^ (so le trong)

= DAE (câu a)

=> AD là phân giác HACˆ(đpcm)

9 tháng 8 2020

học tốtimage

27 tháng 6 2020

Nhờ vẽ hình cho mình luôn nha

10 tháng 3 2017

hình