tim min (x^2-2x+2007)/2007x^2
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\frac{x^2-2x+2007}{2007x^2}\ge\frac{2006}{4028049}\) khi x=2007
\(A=\frac{1}{2007}-\frac{2}{2007x}+\frac{1}{x^2}=\left(\frac{1}{x^2}-2.\frac{1}{2007}.\frac{1}{x}+\frac{1}{2007^2}\right)+\frac{1}{2007}-\frac{1}{2007^2}.\)
\(=\left(\frac{1}{x}-\frac{1}{2007}\right)^2+\frac{2006}{2007^2}\ge\frac{2006}{2007^2}.\)
\(Amin=\frac{2006}{2007^2}\Leftrightarrow x=2007.\)
\(B=\frac{x^2-2x+2007}{2007x^2}\)
\(\Leftrightarrow B.2007x^2=x^2-2x+2017\)
\(\Leftrightarrow x^2-B.2007x^2-2x+2017=0\)
\(\Leftrightarrow x^2\left(1-2007B\right)-2x+2017=0\)
\(\Delta=4-4\left(1-2007B\right)2007\ge0\)
\(\Rightarrow B\ge\frac{2006}{2007^2}\) Dấu "=" xảy ra \(\Leftrightarrow x=2007\)
Vậy \(B_{min}=\frac{2006}{2007^2}\) tại \(x=2007\)
\(\)
Đặt \(A=\frac{x^2-2x+2007}{2007x^2}=\frac{1}{x^2}-\frac{2}{2007x}+\frac{1}{2007}\)
Lại đặt \(t=x^2,t\ge0\)
Suy ra \(A=t^2-\frac{2}{2007}t+\frac{1}{2007}\)
Tới đây bài toán đưa về tìm giá trị nhỏ nhất của đa thức bậc 2
Đặt
\(A=\dfrac{x^2-2x+2007}{2007x^2}=\dfrac{2007x^2-2\cdot x\cdot2007\cdot2007^2}{2007^2x^2}\)
\(\Rightarrow A=\dfrac{\left(x-2007\right)^2}{2007^2x^2}+\dfrac{2006}{2007^2}\ge\dfrac{2006}{2007^2}\)
Dấu ''='' xảy ra
\(\Leftrightarrow\dfrac{\left(x-2007\right)^2}{2007^2x^2}=0\Rightarrow\left(x-2007\right)^2=0\)
\(\Rightarrow x=2007\)
Vậy \(A_{MIN}=\dfrac{2006}{2007^2}\Leftrightarrow x=2007\)
Đặt A=\(\dfrac{x^2-2x+2007}{2007x^2}\)
2007A=\(\dfrac{2007x^2-2.2007x^2+2007^2}{2007x^2}\)
2007A-\(\dfrac{2006}{2007}\)=\(\dfrac{2007x^2-2.2007x+2007^2-2006x^2}{2007x^2}\)
2007A-\(\dfrac{2006}{2007}\)=\(\dfrac{x^2-2.2007x+2007^2}{2007x^2}\)
2007A-\(\dfrac{2006}{2007}\)=\(\dfrac{\left(x-2007\right)^2}{2007x^2}>=0\)
=>2007A>=\(\dfrac{2006}{2007}\)
=>A>=\(\dfrac{2006}{2007^2}\)
=>GTNN của A=\(\dfrac{2006}{2007^2}\)Dấu = xảy ra khi x=2007
Đặt A = \(\dfrac{x^2-2x+2007}{2007x^2}\)
A = \(\dfrac{1}{2007}\) - \(\dfrac{2}{2007x}\) + \(\dfrac{1}{x^2}\)
A = ( \(\dfrac{1}{x^2}\) - \(\dfrac{2}{2007x}\) + \(\dfrac{1}{2007^2}\) ) + (\(\dfrac{1}{2007}-\dfrac{1}{2007^2}\) )
A = ( \(\dfrac{1}{x}-\dfrac{1}{2007}\))2 + (\(\dfrac{1}{2007}-\dfrac{1}{2007^2}\))
Để Amin <=> \(\dfrac{1}{x}-\dfrac{1}{2007}\) = 0
<=> x = 2007
Vậy x = 2007 thì Amin
bài này từng có trên violimpic đấy bạn
\(A=\dfrac{x^2-2x+2007}{2007x^2}=\dfrac{2006}{2007^2}+\dfrac{x^2-4014x+2007^2}{2007^2x^2}=\dfrac{2006}{2007^2}+\dfrac{\left(x-2007\right)^2}{2007^2x^2}\ge\dfrac{2006}{2007^2}\)
Vậy GTNN là \(A=\dfrac{2006}{2007^2}\) đạt được khi \(x=2007\)
ĐKXĐ: \(x\ne0\)
\(\dfrac{x^2-2x+2007}{2007x^2}=\dfrac{2007x^2-2.2007x+2007^2}{2007^2.x^2}\)\(\Rightarrow\dfrac{\left(x-2007\right)^2}{2007^2.x^2}+\dfrac{2006}{2007^2}\ge\dfrac{2006}{2007^2}\)
Dấu " = " xảy ra \(\Leftrightarrow x=2007\)
Vậy min = \(\dfrac{2006}{2007^2}\)