K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

29 tháng 3 2017

\(A=\dfrac{x^2-2x+2007}{2007x^2}=\dfrac{2006}{2007^2}+\dfrac{x^2-4014x+2007^2}{2007^2x^2}=\dfrac{2006}{2007^2}+\dfrac{\left(x-2007\right)^2}{2007^2x^2}\ge\dfrac{2006}{2007^2}\)

Vậy GTNN là \(A=\dfrac{2006}{2007^2}\) đạt được khi \(x=2007\)

\(A=\frac{2007x^2-2x.2007+2007^2}{2007x^2}=\frac{x^2-2x.2007+2007^2}{2007x^2}+\frac{2006x^2}{2007x^2}\)

\(=\frac{\left(x-2007\right)^2}{2007x^2}+\frac{2006}{2007}\ge\frac{2006}{2007}\)

A min =\(\frac{2006}{2007}\)khi \(x-2007=0\)

\(\Leftrightarrow x=2007\)

17 tháng 3 2020

\(A=\frac{2007x^2-2x.2007+2007^2}{2007x^2}\)

\(A=\frac{x^2-2x.2007-2007^2}{2007x^2}+\frac{2006x^2}{2007x^2}\)

\(A=\frac{\left(x-2007\right)^2}{2007x^2}+\frac{2006}{2007}\ge\frac{2006}{2007}\)

\(\Rightarrow Amin=\frac{2006}{2007}\)khi \(x-2007=0\)

\(\Rightarrow x=2007\)

16 tháng 8 2019

\(A=\frac{x^2-2x+2007}{2007x^2}=\frac{2006}{2007^2}+\frac{x^2-4014x+2007^2}{2007^2x^2}=\frac{2006}{2007^2}+\frac{\left(x-2007\right)^2}{2007^2x^2}\ge\frac{2006}{2007^2}\)

Dấu ''='' xảy ra \(\Leftrightarrow\) x = 2007

\(A=\frac{2007x^2-2x.2007+2007^2}{2007x^2}\)

\(=\frac{x^2-2x.2007+2007^2}{2007x^2}+\frac{2006x^2}{2007x^2}\)

\(=\frac{\left(x-2007\right)^2}{2007x^2}+\frac{2006}{2007}\ge\frac{2006}{2007}\)

A min =\(\frac{2006}{2007}\)khi \(x-2007=0\) hay \(x=2007\)

Câu 2:

ĐKXĐ: x<>0

\(B=\dfrac{-x^2-x-1}{x^2}\)

\(=-1-\dfrac{1}{x}-\dfrac{1}{x^2}\)

\(=-\left(\dfrac{1}{x^2}+\dfrac{1}{x}+1\right)\)

\(=-\left(\dfrac{1}{x^2}+2\cdot\dfrac{1}{x}\cdot\dfrac{1}{2}+\dfrac{1}{4}+\dfrac{3}{4}\right)\)

\(=-\left(\dfrac{1}{x}+\dfrac{1}{2}\right)^2-\dfrac{3}{4}< =-\dfrac{3}{4}\forall x< >0\)

Dấu '=' xảy ra khi 1/x+1/2=0

=>1/x=-1/2

=>x=-2

20 tháng 11 2023

a: ĐKXĐ: \(x\notin\left\{0;1;-1\right\}\)

b: \(A=\dfrac{x^2+x}{x^2-2x+1}:\left(\dfrac{x+1}{x}+\dfrac{1}{x-1}+\dfrac{2-x^2}{x^2-x}\right)\)

\(=\dfrac{x\left(x+1\right)}{\left(x-1\right)^2}:\dfrac{\left(x+1\right)\left(x-1\right)+x+2-x^2}{x\left(x-1\right)}\)

\(=\dfrac{x\left(x+1\right)}{\left(x-1\right)^2}\cdot\dfrac{x\left(x-1\right)}{x^2-1+x+2-x^2}\)

\(=\dfrac{x^2\left(x+1\right)}{\left(x-1\right)\left(x+1\right)}=\dfrac{x^2}{x-1}\)

c: \(A=\dfrac{x^2}{x-1}=\dfrac{x^2-1+1}{x-1}=x+1+\dfrac{1}{x-1}\)

=>\(A=x-1+\dfrac{1}{x-1}+2>=2\cdot\sqrt{\left(x-1\right)\cdot\dfrac{1}{x-1}}+2=2+2=4\)

Dấu '=' xảy ra khi (x-1)2=1

=>x-1=1 hoặc x-1=-1

=>x=0(loại) hoặc x=2(nhận)

Vậy: \(A_{min}=4\) khi x=2

AH
Akai Haruma
Giáo viên
6 tháng 1 2023

Lời giải:

Áp dụng BĐT Bunhiacopxky:

$2x^2+2=2(x^2+1)=(1^2+1^2)(x^2+1)\geq (x+1)^2$

$\Rightarrow Q=\frac{2x^2+2}{(x+1)^2}\geq \frac{(x+1)^2}{(x+1)^2}=1$

Vậy GTNN của $Q$ là $1$. Giá trị này đạt tại $\frac{1}{x}=\frac{1}{1}$ hay $x=1$

20 tháng 10 2015

a) x2 - 2x + 5 = (x - 1)2 + 4 >= 4

Min là 4 khi x = 1