Bài 1 :cho phương trình (ẩn x):\(x^3+ax^2-4x-4=0\)
a. Xác định a để phương trình có một nghiệm \(x\)=1
b. Với giá trị a vừa tìm được , tìm các nghiệm còn lại của phương trình .
Bài 2:Tìm các giá trị của m sao cho phương trình :
a)\(12-2\left(1-x^2\right)=4\left(x-m\right)-\left(x-3\right)\left(2x+5\right)\)có nghiệm \(x\)=3
b)\(\left(9x+1\right)\left(x-2m\right)=\left(3x+2\right)\left(3x-5\right)\)có nghiệm \(x=1\)
Bài 1:
a.
Thay x = 1 là nghiệm của pt, ta được:
\(1^3+a.1^2-4.1-4=0\)
\(\Leftrightarrow1+a-4-4=0\)
\(\Leftrightarrow1+a-8=0\)
\(\Leftrightarrow a-7=0\)
\(\Leftrightarrow a=7\)
b.
Với a = 7 ta được:
\(x^3+7x^2-4x-4=0\)
\(\Leftrightarrow x^3-x^2+8x^2-8x+4x-4=0\)
\(\Leftrightarrow x^2\left(x-1\right)+8x\left(x-1\right)+4\left(x-1\right)=0\)
\(\Leftrightarrow\left(x^2+8x+4\right)\left(x-1\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x-1=0\\x^2+8x+4=0\end{matrix}\right.\)
Ta có:
\(x^2+8x+4=x^2+2.x.4+4^2-12\)
\(=\left(x+4\right)^2-12=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x=-4+2\sqrt{3}\\x=-4-2\sqrt{3}\end{matrix}\right.\)
Vậy. \(\left[{}\begin{matrix}x=1\\x=-4+2\sqrt{3}\\x=-4-2\sqrt{3}\end{matrix}\right.\)