K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

7 tháng 4 2018

Bài 1:

a.

Thay x = 1 là nghiệm của pt, ta được:

\(1^3+a.1^2-4.1-4=0\)

\(\Leftrightarrow1+a-4-4=0\)

\(\Leftrightarrow1+a-8=0\)

\(\Leftrightarrow a-7=0\)

\(\Leftrightarrow a=7\)

b.

Với a = 7 ta được:

\(x^3+7x^2-4x-4=0\)

\(\Leftrightarrow x^3-x^2+8x^2-8x+4x-4=0\)

\(\Leftrightarrow x^2\left(x-1\right)+8x\left(x-1\right)+4\left(x-1\right)=0\)

\(\Leftrightarrow\left(x^2+8x+4\right)\left(x-1\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x-1=0\\x^2+8x+4=0\end{matrix}\right.\)

Ta có:

\(x^2+8x+4=x^2+2.x.4+4^2-12\)

\(=\left(x+4\right)^2-12=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x=-4+2\sqrt{3}\\x=-4-2\sqrt{3}\end{matrix}\right.\)

Vậy. \(\left[{}\begin{matrix}x=1\\x=-4+2\sqrt{3}\\x=-4-2\sqrt{3}\end{matrix}\right.\)

11 tháng 1 2023

`B4:`

`a)` Thay `x=3` vào ptr:

  `3^3-3^2-9.3-9m=0<=>m=-1`

`b)` Thay `m=-1` vào ptr có: `x^3-x^2-9x+9=0`

        `<=>x^2(x-1)-9(x-1)=0`

        `<=>(x-1)(x-3)(x+3)=0<=>[(x=1),(x=+-3):}`

`B5:`

`a)` Thay `x=-2` vào có: `(-2)^3-(m^2-m+7).(-2)-3(m^2-m-2)=0`

    `<=>-8+2m^2-2m+14-3m^2+3m+6=0`

   `<=>-m^2+m+12=0<=>(m-4)(m+3)=0<=>[(m=4),(m=-3):}`

`b)`

`@` Với `m=4` có: `x^3-(4^2-4+7)x-3(4^2-4-2)=0`

      `<=>x^3-19x-30=0`

      `<=>x^3-5x^2+5x^2-25x+6x-30=0`

      `<=>(x-5)(x^2+5x+6)=0`

      `<=>(x-5)(x+2)(x+3)=0<=>[(x=5),(x=-2),(x=-3):}`

`@` Với `m=-3` có: `x^3-[(-3)^2-(-3)+7]x-3[(-3)^2-(-3)-2]=0`

   `<=>x^3-19x-30=0<=>[(x=5),(x=-2),(x=-3):}`

14 tháng 1 2016

a) m = -3/4

b) m = 1

mình tính ra như vầy nè , tick cho mình nha ! ! ! thanks

+ với x =1

=> PT => \(m^2-m+7+3m^2-3m-6-1=0.\)

\(\Leftrightarrow4m^2-4m=0\Leftrightarrow4m\left(m-1\right)=0\)

\(\Leftrightarrow\orbr{\begin{cases}m=0\\m=1\end{cases}}.\)

+Với m =0

pt => \(x^3-7x+6=0\Leftrightarrow\left(x^3-x^2\right)+\left(x^2-x\right)-\left(6x-6\right)=0.\)

\(\left(x-1\right)\left(x^2+x-6\right)=0\Leftrightarrow\left(x-1\right)\left(x-2\right)\left(x+3\right)=0\)

x-1=0 => x =1

x-2 =0 => x =2

x+3 =0 => x =- 3

tương tự với m = 1 nhé

1 tháng 3 2020

1) Phương trình ban đầu tương đương :

\(\left(2021x-2020\right)^3=\left(2x-2\right)^3+\left(2019x-2018\right)^3\)

Đặt \(a=2x-2,b=2019x-2018\)

\(\Rightarrow a+b=2021x-2020\)

Khi đó phương trình có dạng :

\(\left(a+b\right)^3=a^3+b^3\)

\(\Leftrightarrow3ab\left(a+b\right)=0\)

\(\Leftrightarrow3\cdot\left(2x-2\right)\cdot\left(2019x-2018\right)\cdot\left(2021x-2002\right)=0\)

\(\Leftrightarrow\)Hoặc \(2x-2=0\) 

          Hoặc \(2019x-2018=0\)

          Hoặc \(2021x-2020=0\)

\(\Rightarrow x\in\left\{1,\frac{2018}{2019},\frac{2020}{2021}\right\}\) (thỏa mãn)

Vậy : phương trình đã cho có tập nghiệm \(S=\left\{1,\frac{2018}{2019},\frac{2020}{2021}\right\}\)

1 tháng 3 2020

\(x\left(2x-3\right)+x\left(x-m\right)=3x^2+x-m\)

\(\Leftrightarrow2x^2-3x+x^2-xm=3x^2+x-m\)

\(\Leftrightarrow-3x-xm=x-m\)

\(\Leftrightarrow4x+xm=m\Leftrightarrow x\left(4+m\right)=m\)

\(\Leftrightarrow x=\frac{m}{m+4}\)

Phương trình có nghiệm không âm \(\Leftrightarrow x\ge0\)

\(\Rightarrow\frac{m}{m+4}\ge0\)

Mà \(m+4>m\)nên \(\orbr{\begin{cases}m\ge0\\m+4\le0\end{cases}}\Leftrightarrow\orbr{\begin{cases}m\ge0\\m\le-4\end{cases}}\)

18 tháng 1 2017

Bài 2 thay 2 vào x rồi giải bình thường tìm k