cho 3 số x,y,z thỏa mãn điều kiện xyz=2014.chứng minh rằng biểu thức sao ko phụ thuộc vào các biến x,y,z:
\(\dfrac{2014x}{xy+2014x+2014}+\dfrac{y}{yz+y+2014}+\dfrac{z}{xz+z+1}\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\frac{2014x}{xy+2014x+2014}+\frac{y}{yz+y+2014}+\frac{z}{xz+z+1}=1\)
\(=\frac{xyz.x}{xy+xyzx+xyz}+\frac{y}{yz+y+xyz}+\frac{z}{zx+z+1}\)
\(=\frac{xz}{1+zx+z}+\frac{1}{z+1+zx}+\frac{z}{xz+z+1}=\frac{xz+1+z}{1+xz+z}=1\)
=> đpcm
với xyz=2009, thay vào, ta có
\(A=\frac{x^2yz}{xy+x^2yz+xyz}+\frac{y}{yz+y+xyz}+\frac{z}{xz+z+1}\)
=\(\frac{xz}{1+zx+y}+\frac{1}{z+1+xz}+\frac{z}{xz+z+1}=1\)
=> ... k phụ thuộc vào x,y,z(ĐPCM)
^_^
Phân thức thứ nhất
\(\frac{2011x}{xy+2011x+2011}=\frac{2011xz}{xyz+2011xz+2011z}=\frac{2011xz}{2011+2011xz+2011z}=\frac{2011xz}{2011\left(1+xz+z\right)}=\frac{xz}{xz+z+1}\)
Phân thức thứ hai
\(\frac{y}{yz+y+2011}=\frac{y}{yz+y+xyz}=\frac{y}{y\left(z+1+xz\right)}=\frac{1}{xz+z+1}\)
Cộng ba phân thức
=> biểu thức = \(\frac{xz+z+1}{xz+z+1}=1\)
Có \(VT=\dfrac{x^2}{x^3-xyz+2013x}+\dfrac{y^2}{y^3-xyz+2013y}+\dfrac{z^2}{z^3-xyz+2013z}\)
\(\ge\dfrac{\left(x+y+z\right)^2}{x^3+y^3+z^3-3xyz+2013\left(x+y+z\right)}\)
\(=\dfrac{\left(x+y+z\right)^2}{\left(x+y+z\right)\left[x^2+y^2+z^2-\left(xy+yz+zx\right)\right]+2013\left(x+y+z\right)}\)
\(=\dfrac{x+y+z}{x^2+y^2+z^2-\left(xy+yz+zx\right)+3\left(xy+yz+zx\right)}\)
(vì \(2013=3.671=3\left(xy+yz+zx\right)\))
\(=\dfrac{x+y+z}{x^2+y^2+z^2+2\left(xy+yz+zx\right)}\)
\(=\dfrac{x+y+z}{\left(x+y+z\right)^2}\)
\(=\dfrac{1}{x+y+z}\)
ĐTXR \(\Leftrightarrow\dfrac{1}{x^2-yz+2013}=\dfrac{1}{y^2-zx+2013}=\dfrac{1}{z^2-xy+2013}\)
\(\Leftrightarrow x^2-yz=y^2-zx=z^2-xy\)
\(\Leftrightarrow x=y=z\) (với \(x,y,z>0\))
Vậy ta có đpcm.
Đặt \(A=\dfrac{2014x}{xy+2014x+2014}+\dfrac{y}{yz+y+2014}+\dfrac{z}{xz+z+1}\)
\(A=\dfrac{x^2yz}{xy+x^2yz+xyz}+\dfrac{y}{yz+y+xyz}+\dfrac{z}{xz+z+1}\)
\(A=\dfrac{x^2yz}{xy\left(1+xz+z\right)}+\dfrac{y}{y\left(z+1+xz\right)}+\dfrac{z}{xz+z+1}\)
\(A=\dfrac{xz}{xz+z+1}+\dfrac{1}{xz+z+1}+\dfrac{z}{xz+z+1}\)
\(A=\dfrac{xz+z+1}{xz+z+1}=1\)
\(\Rightarrowđpcm\)
Ta có : \(A=\dfrac{2014x}{xy+2014x+2014}+\dfrac{y}{yz+y+2014}+\dfrac{z}{xz+z+1}\)
\(=\dfrac{xyz.x}{xy+xyz.x+xyz}+\dfrac{x.y}{x.yz+xy+xyz.x}+\dfrac{xy.z}{xz.xy+xy.z+xy}\)
\(=\dfrac{x^2yz}{xy+x^2yz+xyz}+\dfrac{xy}{xyz+x^2yz+xy}+\dfrac{xyz}{x^2yz+xyz+xy}\)
\(=\dfrac{x^2yz+xyz+xy}{x^2yz+xyz+xy}=1\) (const)
Vậy A không phụ thuộc vào các biến x,y,z