Soánh A và B
A=\(\dfrac{8^9+12}{8^9+7}\) và B=\(\dfrac{8^{10}+4}{8^{10}+1}\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: \(\dfrac{15}{8}-\dfrac{13}{8}=\dfrac{15-13}{8}=\dfrac{2}{8}=\dfrac{1}{4}\)
b: \(\dfrac{7}{15}-\dfrac{2}{15}=\dfrac{7-2}{15}=\dfrac{5}{15}=\dfrac{1}{3}\)
c: \(\dfrac{11}{12}-\dfrac{2}{12}=\dfrac{11-2}{12}=\dfrac{9}{12}=\dfrac{3}{4}\)
d: \(\dfrac{19}{7}-\dfrac{5}{7}=\dfrac{19-5}{7}=\dfrac{14}{7}=2\)
a) \(< \)
b) \(>\)
c) \(< \)
d) \(>\)
e) \(< \)
g) \(>\)
h) \(>\)
k) \(>\)
\(A=\dfrac{8^9+12}{8^9+7}=\dfrac{8^9+7+5}{8^9+7}=\dfrac{8^9+7}{8^9+7}+\dfrac{5}{8^9+7}=1+\dfrac{5}{8^9+7}\left(1\right)\)
\(B=\dfrac{8^{10}+4}{8^{10}-1}=\dfrac{8^{10}-1+5}{8^{10}-1}=\dfrac{8^{10}-1}{8^{10}-1}+\dfrac{5}{8^{10}-1}=1+\dfrac{5}{8^{10}-1}\left(2\right)\)
Từ \(\left(1\right)+\left(2\right)\Leftrightarrow A< B\)
em trả lời ccaua này hi vọng thầy còn nhớ em
a) -9/4<`1/3
\(A=\dfrac{8^9+13}{8^9+7}=\dfrac{8^9+7+6}{8^9+7}=1+\dfrac{6}{8^9+7}\)
\(B=\dfrac{8^{10}-1+5}{8^{10}-1}=1+\dfrac{5}{8^{10}-1}\)
Vì \(1+\dfrac{6}{8^9+7}>1+\dfrac{5}{8^{10}-1}\) \(\Rightarrow A>B\)
a, \(A-B=\frac{3}{8^3}+\frac{7}{8^4}-\frac{7}{8^3}-\frac{3}{8^4}==\left(\frac{7}{8^4}-\frac{3}{8^4}\right)-\left(\frac{7}{8^3}-\frac{3}{8^3}\right)=\frac{4}{8^4}-\frac{4}{8^3}< 0\)
Vậy A < B
b, \(A=\frac{10^7+5}{10^7-8}=\frac{10^7-8+13}{10^7-8}=1+\frac{13}{10^7-8}\)
\(B=\frac{10^8+6}{10^8-7}=\frac{10^8-7+13}{10^8-7}=1+\frac{13}{10^8-7}\)
Vì \(10^7-8< 10^8-7\Rightarrow\frac{1}{10^7-8}>\frac{1}{10^8-7}\Rightarrow\frac{13}{10^7-8}>\frac{13}{10^8-7}\Rightarrow A>B\)
c,Áp dụng nếu \(\frac{a}{b}>1\Rightarrow\frac{a}{b}>\frac{a+n}{a+n}\) có:
\(B=\frac{10^{1993}+1}{10^{1992}+1}>\frac{10^{1993}+1+9}{10^{1992}+1+9}=\frac{10^{1993}+10}{10^{1992}+10}=\frac{10\left(10^{1992}+1\right)}{10\left(10^{1991}+1\right)}=\frac{10^{1992}+1}{10^{1991}+1}=A\)
Vậy A < B
a) Thứ tự từ bé đến lớn: \(\dfrac{2}{7};\dfrac{3}{7};\dfrac{5}{7}\)
b) Thứ tự từ bé đến lớn: \(\dfrac{1}{8};\dfrac{5}{8};\dfrac{7}{8}\)
c) Thứ tự từ bé đến lớn: \(\dfrac{1}{10};\dfrac{7}{10};\dfrac{9}{10}\)
\(A=\dfrac{8^9+12}{8^9+7}=\dfrac{8^9+7+5}{8^9+7}=\dfrac{8^9+7}{8^9+7}+\dfrac{5}{8^9+7}=1+\dfrac{5}{8^9+7}\left(1\right)\)
\(B=\dfrac{8^{10}+4}{8^{10}-1}=\dfrac{8^{10}-1+5}{8^{10}-1}=\dfrac{8^{10}-1}{8^{10}-1}+\dfrac{5}{8^{10}-1}=1+\dfrac{5}{8^{10}-1}\left(2\right)\)
Từ \(\left(1\right)+\left(2\right)\Leftrightarrow A>B\)