K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

30 tháng 3 2018

Sửa đề : Tìm nghiệm nguyên thỏa mãn bạn nhé.

Vì nếu tìm nghiệm nguyên dương thì từ đầu ta suy ra ngay PT vô nghiệm

Lời giải: Cho x,y và z thuộc Z

\(\Leftrightarrow\left\{{}\begin{matrix}x+y-2=z\left(1\right)\\3x^2+2y^2=z^2+13\left(2\right)\end{matrix}\right.\)

Lấy (2) trừ (1) bình phương ta

\(\Leftrightarrow2x^2+y^2-2xy-4x+4y+4=13\)

\(\Leftrightarrow\left(x-y-2\right)^2+\left(x+4\right)^2=37\)

Tổng hai số chính phương bằng 37 có một cặp duy nhất: (36,1)

\(\left[{}\begin{matrix}\left\{{}\begin{matrix}\left|x-y-2\right|=1\\\left|x+4\right|=36\end{matrix}\right.\left(\circledast\right)\\\left\{{}\begin{matrix}\left|x-y-2\right|=6\\\left|x+4\right|=1\end{matrix}\right.\left(\circledast\circledast\right)\end{matrix}\right.\)

\(\Rightarrow z=2-\left(x+y\right)\)

Đến đây lập bảng 13 nghiệm là ra, kết quả giống như Akai Haruma

AH
Akai Haruma
Giáo viên
29 tháng 3 2018

Lời giải:

Sửa lại đề là tìm nghiệm nguyên thôi bạn nhé. Nếu tìm nghiệm nguyên dương thì hiển nhiên từ pt đầu tiên ta suy ra ngay hệ vô nghiệm.

Ta có:

\(\left\{\begin{matrix} x+y+z=2\\ 3x^2+2y^2-z^2=13\end{matrix}\right.\) \(\Leftrightarrow \left\{\begin{matrix} z=2-x-y\\ 3x^2+2y^2=13+z^2\end{matrix}\right.\)

\(\Rightarrow 3x^2+2y^2=13+(2-x-y)^2\)

\(\Leftrightarrow 3x^2+2y^2=13+4+x^2+y^2+2xy-4x-4y\)

\(\Leftrightarrow 2x^2+y^2-2xy+4x+4y-17=0\)

\(\Leftrightarrow (x-y-2)^2+(x+4)^2=37\)

\(\Rightarrow (x+4)^2=37-(x-y-2)^2\leq 37\)

\(\Rightarrow -\sqrt{37}\leq x+4\leq \sqrt{37}\)

Suy ra \(-10\leq x\leq 2\)

Ta có:

Violympic toán 9

Từ đây suy ra \(x\in \left\{-10; -5; -3; 2\right\}\)

Với \(x=-10; (x-y-2)^2=1\Rightarrow (-12-y)^2=1\)

\(\Rightarrow \left[\begin{matrix} y=-13\\ y=-11\end{matrix}\right.\Rightarrow\left[\begin{matrix} z=25\\ z=23\end{matrix}\right.\)

Với \(x=-5; (x-y-2)^2=36\Rightarrow (-7-y)^2=36\)

\(\Rightarrow \left[\begin{matrix} y=-1\rightarrow z=8\\ y=-13\rightarrow z=20\end{matrix}\right.\)

Với \(x=-3; (x-y-2)^2=36\Rightarrow (-5-y)^2=36\)

\(\Rightarrow \left[\begin{matrix} y=1\rightarrow z=4\\ y=-11\rightarrow z=16\end{matrix}\right.\)

Với \(x=2, (x-y-2)^2=1\Rightarrow y^2=1\)

\(\Rightarrow \left[\begin{matrix} y=1\rightarrow z=-1\\ y=-1\rightarrow z=1\end{matrix}\right.\)

Vậy.....

NV
15 tháng 2 2020

\(z=x+y-2\Rightarrow z^2=x^2+y^2+4+2xy-4x-4y\)

\(\Rightarrow2x^2+y^2-4-2xy+4y+4y=13\)

\(\Leftrightarrow\left(x-y-2\right)^2+\left(x+4\right)^2=37=1^2+6^2\)

\(\Rightarrow\left\{{}\begin{matrix}x-y-2=1\\x+4=6\end{matrix}\right.\) \(\Rightarrow\) ko tồn tại bộ số nguyên dương thỏa mãn

23 tháng 6 2023

x=y=z=2

Ta có:

\(\left\{{}\begin{matrix}4x+y+2z=4\\3x+6y-2z=6\end{matrix}\right.\)

\(\Rightarrow\left(4x+y+2z\right)+\left(3x+6y-2z\right)=4+6=10\)

\(\Leftrightarrow7x+7y=10\)

\(\Leftrightarrow x+y=\dfrac{10}{7}\)

Do x, y nguyên dương nên không có x, y, z thoả mãn đề bài.

b: =>x^2-y^2-4y-2x-3=0 và x^2+2x+y=0

=>x^2-2x+1-y^2-4y-4=0 và x^2+2x+y=0

=>x=1 và y=-2 và x^2+2x+y=0

=>Hệ vô nghiệm

a: \(\Leftrightarrow\left\{{}\begin{matrix}z=2x-5\\y=3-2x+z=3-2x+2x-5=-2\\3x-2\cdot\left(-2\right)+2x-5=14\end{matrix}\right.\)

=>y=-2; 3x+4+2x-5=14; z=2x-5

=>y=-2; x=3; z=2*3-5=1

3 tháng 1 2018

mọi người ơi giúp mình vs mai ktra r

22 tháng 1 2021

\(\left\{{}\begin{matrix}2x+y=3m-1\\x-2y=-m-3\end{matrix}\right.\)

\(\Leftrightarrow\) \(\left\{{}\begin{matrix}x=\dfrac{3m-1-y}{2}\\\dfrac{3m-1-y}{2}-2y=-m-3\end{matrix}\right.\)

\(\Leftrightarrow\) \(\left\{{}\begin{matrix}x=\dfrac{3m-1-y}{2}\\3m-1-y-4y=-2m-6\end{matrix}\right.\)

\(\Leftrightarrow\) \(\left\{{}\begin{matrix}x=\dfrac{3m-1-y}{2}\\5y=5m+5\end{matrix}\right.\)

\(\Leftrightarrow\) \(\left\{{}\begin{matrix}x=\dfrac{3m-1-y}{2}\\y=m+1\end{matrix}\right.\)

\(\Leftrightarrow\) \(\left\{{}\begin{matrix}x=\dfrac{3m-1-m-1}{2}\\y=m+1\end{matrix}\right.\)

\(\Leftrightarrow\) \(\left\{{}\begin{matrix}x=m-1\\y=m+1\end{matrix}\right.\)

Vậy hpt trên có nghiệm duy nhất \(\left\{{}\begin{matrix}x=m-1\\y=m+1\end{matrix}\right.\)

Ta có: y = x2 \(\Leftrightarrow\) m + 1 = (m - 1)2 \(\Leftrightarrow\) m + 1 = m2 - 2m + 1

\(\Leftrightarrow\) m2 - 3m = 0

\(\Leftrightarrow\) m(m - 3) = 0

\(\Leftrightarrow\) \(\left[{}\begin{matrix}m=0\\m-3=0\end{matrix}\right.\)

\(\Leftrightarrow\) \(\left[{}\begin{matrix}m=0\\m=3\end{matrix}\right.\)

Vậy m = 0; m = 3 thì hpt trên có nghiệm duy nhất và thỏa mãn y = x2

Chúc bn học tốt!