K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

b: =>x^2-y^2-4y-2x-3=0 và x^2+2x+y=0

=>x^2-2x+1-y^2-4y-4=0 và x^2+2x+y=0

=>x=1 và y=-2 và x^2+2x+y=0

=>Hệ vô nghiệm

a: \(\Leftrightarrow\left\{{}\begin{matrix}z=2x-5\\y=3-2x+z=3-2x+2x-5=-2\\3x-2\cdot\left(-2\right)+2x-5=14\end{matrix}\right.\)

=>y=-2; 3x+4+2x-5=14; z=2x-5

=>y=-2; x=3; z=2*3-5=1

30 tháng 3 2018

Sửa đề : Tìm nghiệm nguyên thỏa mãn bạn nhé.

Vì nếu tìm nghiệm nguyên dương thì từ đầu ta suy ra ngay PT vô nghiệm

Lời giải: Cho x,y và z thuộc Z

\(\Leftrightarrow\left\{{}\begin{matrix}x+y-2=z\left(1\right)\\3x^2+2y^2=z^2+13\left(2\right)\end{matrix}\right.\)

Lấy (2) trừ (1) bình phương ta

\(\Leftrightarrow2x^2+y^2-2xy-4x+4y+4=13\)

\(\Leftrightarrow\left(x-y-2\right)^2+\left(x+4\right)^2=37\)

Tổng hai số chính phương bằng 37 có một cặp duy nhất: (36,1)

\(\left[{}\begin{matrix}\left\{{}\begin{matrix}\left|x-y-2\right|=1\\\left|x+4\right|=36\end{matrix}\right.\left(\circledast\right)\\\left\{{}\begin{matrix}\left|x-y-2\right|=6\\\left|x+4\right|=1\end{matrix}\right.\left(\circledast\circledast\right)\end{matrix}\right.\)

\(\Rightarrow z=2-\left(x+y\right)\)

Đến đây lập bảng 13 nghiệm là ra, kết quả giống như Akai Haruma

AH
Akai Haruma
Giáo viên
29 tháng 3 2018

Lời giải:

Sửa lại đề là tìm nghiệm nguyên thôi bạn nhé. Nếu tìm nghiệm nguyên dương thì hiển nhiên từ pt đầu tiên ta suy ra ngay hệ vô nghiệm.

Ta có:

\(\left\{\begin{matrix} x+y+z=2\\ 3x^2+2y^2-z^2=13\end{matrix}\right.\) \(\Leftrightarrow \left\{\begin{matrix} z=2-x-y\\ 3x^2+2y^2=13+z^2\end{matrix}\right.\)

\(\Rightarrow 3x^2+2y^2=13+(2-x-y)^2\)

\(\Leftrightarrow 3x^2+2y^2=13+4+x^2+y^2+2xy-4x-4y\)

\(\Leftrightarrow 2x^2+y^2-2xy+4x+4y-17=0\)

\(\Leftrightarrow (x-y-2)^2+(x+4)^2=37\)

\(\Rightarrow (x+4)^2=37-(x-y-2)^2\leq 37\)

\(\Rightarrow -\sqrt{37}\leq x+4\leq \sqrt{37}\)

Suy ra \(-10\leq x\leq 2\)

Ta có:

Violympic toán 9

Từ đây suy ra \(x\in \left\{-10; -5; -3; 2\right\}\)

Với \(x=-10; (x-y-2)^2=1\Rightarrow (-12-y)^2=1\)

\(\Rightarrow \left[\begin{matrix} y=-13\\ y=-11\end{matrix}\right.\Rightarrow\left[\begin{matrix} z=25\\ z=23\end{matrix}\right.\)

Với \(x=-5; (x-y-2)^2=36\Rightarrow (-7-y)^2=36\)

\(\Rightarrow \left[\begin{matrix} y=-1\rightarrow z=8\\ y=-13\rightarrow z=20\end{matrix}\right.\)

Với \(x=-3; (x-y-2)^2=36\Rightarrow (-5-y)^2=36\)

\(\Rightarrow \left[\begin{matrix} y=1\rightarrow z=4\\ y=-11\rightarrow z=16\end{matrix}\right.\)

Với \(x=2, (x-y-2)^2=1\Rightarrow y^2=1\)

\(\Rightarrow \left[\begin{matrix} y=1\rightarrow z=-1\\ y=-1\rightarrow z=1\end{matrix}\right.\)

Vậy.....

NV
18 tháng 5 2021

Pt đầu chắc là sai đề (chắc chắn), bạn kiểm tra lại

Với pt sau:

Nhận thấy một ẩn bằng 0 thì 2 ẩn còn lại cũng bằng 0, do đó \(\left(x;y;z\right)=\left(0;0;0\right)\) là 1 nghiệm

Với \(x;y;z\ne0\)

Từ pt đầu ta suy ra \(y>0\) , từ đó suy ra \(z>0\) từ pt 2 và hiển nhiên \(x>0\) từ pt 3

Do đó:

\(\left\{{}\begin{matrix}y=\dfrac{2x^2}{x^2+1}\le\dfrac{2x^2}{2x}=x\\z=\dfrac{3y^3}{y^4+y^2+1}\le\dfrac{3y^3}{3\sqrt[3]{y^4.y^2.1}}=y\\x=\dfrac{4z^4}{z^6+z^4+z^2+1}\le\dfrac{4z^4}{4\sqrt[4]{z^6z^4z^2}}=z\end{matrix}\right.\)

\(\Rightarrow\left\{{}\begin{matrix}y\le x\\z\le y\\x\le z\end{matrix}\right.\) \(\Rightarrow x=y=z\)

Dấu "=" xảy ra khi và chỉ khi \(x=y=z=1\)

Vậy nghiệm của hệ là \(\left(x;y;z\right)=\left(0;0;0\right);\left(1;1;1\right)\)

7 tháng 11 2021

\(1,\Leftrightarrow\left\{{}\begin{matrix}x=y+5\\2y+10+y=11\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=\dfrac{16}{3}\\y=\dfrac{1}{3}\end{matrix}\right.\\ 2,\Leftrightarrow\left\{{}\begin{matrix}3x=1-2y\\1-2y+y=2\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=1\\y=-1\end{matrix}\right.\\ 3,\Leftrightarrow\left\{{}\begin{matrix}x=y+2\\3y+6+2y=11\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=3\\y=1\end{matrix}\right.\)

a) Ta có: \(\left\{{}\begin{matrix}x+my=2\\mx-2y=1\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}mx+m^2y=2m\\mx-2y=1\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}m^2y+2y=2m-1\\mx-2y=1\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}y\left(m^2+2\right)=2m-1\\mx=1+2y\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}y=\dfrac{2m-1}{m^2+2}\\x=\dfrac{1+2y}{m}=\left(1+\dfrac{2m-1}{m^2+2}\right)\cdot\dfrac{1}{m}\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}x=\dfrac{m^2+2+2m-1}{m^2+2}\cdot\dfrac{1}{m}=\dfrac{m^2+2m+1}{m\left(m^2+2\right)}\\y=\dfrac{2m-1}{m^2+2}\end{matrix}\right.\)

Để hệ phương trình có nghiệm duy nhất thỏa mãn x>0 và y>0 thì \(\left\{{}\begin{matrix}\dfrac{m^2+2m+1}{m\left(m^2+2\right)}>0\\\dfrac{2m-1}{m^2+2}>0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}m>0\\2m-1>0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}m>0\\m>\dfrac{1}{2}\end{matrix}\right.\)

\(\Leftrightarrow m>\dfrac{1}{2}>0\)

Vậy: Khi m>0 thì hệ phương trình có nghiệm duy nhất (x,y) thỏa mãn x>0 và y>0

ở bước đầu giải hệ theo m, bạn ko nên nhân với m vì nếu m=0 thì sẽ không giải được

8 tháng 8 2017

\(\left\{{}\begin{matrix}3x^2+xz-yz+y^2=2\left(1\right)\\y^2+xy-yz+z^2=0\left(2\right)\\x^2-xy-xz-z^2=2\left(3\right)\end{matrix}\right.\)

Lấy (2) cộng (3) ta được

\(x^2+y^2-yz-zx=2\) (4)

Lấy (1) - (4) ta được

\(2x\left(x+z\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x=0\\x=-z\end{matrix}\right.\)

Xét 2 TH rồi thay vào tìm được y và z

8 tháng 8 2017

1. \(\left\{{}\begin{matrix}6xy=5\left(x+y\right)\\3yz=2\left(y+z\right)\\7zx=10\left(z+x\right)\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}\dfrac{x+y}{xy}=\dfrac{6}{5}\\\dfrac{y+z}{yz}=\dfrac{3}{2}\\\dfrac{z+x}{zx}=\dfrac{7}{10}\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}\dfrac{1}{x}+\dfrac{1}{y}=\dfrac{6}{5}\\\dfrac{1}{y}+\dfrac{1}{z}=\dfrac{3}{2}\\\dfrac{1}{z}+\dfrac{1}{x}=\dfrac{7}{10}\end{matrix}\right.\)

Đến đây thì dễ rồi nhé

NV
14 tháng 3 2020

Không mất tính tổng quát, giả sử \(x=min\left\{x;y;z\right\}\)

\(\Rightarrow z=3x^3+2x^2+x\le3y^3+2y^2+y\)

\(\Rightarrow z\le x\)

\(\Rightarrow z=x\)

\(\Rightarrow x=y=z\)

\(\Rightarrow x=3y^3+2x^2+x\Rightarrow x^2\left(3x+2\right)=0\Rightarrow\left[{}\begin{matrix}x=0\\x=-\frac{2}{3}\end{matrix}\right.\)

14 tháng 3 2020

@Nguyễn Việt Lâm