1) Tim GTLN- GTNN cua ham so
a) y = -2Sin(\(x+\dfrac{\Pi}{3}\)) + 3
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(y=f\left(x\right)=\frac{27-2x}{12-x}=\frac{3+24-2x}{12-x}=\frac{3+2\left(12-x\right)}{12-x}=2+\frac{3}{12-x}\)
Để \(f\left(x\right)=2+\frac{3}{12-x}\) đạt GTLN <=> \(\frac{3}{12-x}\) đạt GTLN
=> 12 - x là số nguyên dương nhỏ nhất
=> 12 - x = 1 => x = 11
Vậy GTLN của hàm số đó là 5 tại x = 11
Để \(f\left(x\right)=2+\frac{3}{12-x}\) đạt GTNN <=> \(\frac{3}{12-x}\)đạt GTNN
=> 12 - x là số nguyên âm lớn nhất
=> 12 - x = - 1 => x = 13
Vậy \(y_{min}=-1\Leftrightarrow x=13\)
c.
\(y=2sin2x-1\)
Do \(-1\le sin2x\le1\Rightarrow-3\le y\le1\)
\(y_{min}=-3\) khi \(sin2x=-1\)
\(y_{max}=1\) khi \(sin2x=1\)
d.
\(-1\le sin3x\le1\Rightarrow-1\le y\le3\)
e.
\(0\le sin^22x\le1\Rightarrow1\le y\le4\)
\(-1\le sin\left(x+\frac{\pi}{3}\right)\le1\Rightarrow-2\le y\le2\)
\(y_{min}=-2\) khi \(x=-\frac{5\pi}{6}\)
\(y_{max}=2\) khi \(x=\frac{\pi}{6}\)
a: =>2sin(x+pi/3)=-1
=>sin(x+pi/3)=-1/2
=>x+pi/3=-pi/6+k2pi hoặc x+pi/3=7/6pi+k2pi
=>x=-1/2pi+k2pi hoặc x=2/3pi+k2pi
b: =>2sin(x-30 độ)=-1
=>sin(x-30 độ)=-1/2
=>x-30 độ=-30 độ+k*360 độ hoặc x-30 độ=180 độ+30 độ+k*360 độ
=>x=k*360 độ hoặc x=240 độ+k*360 độ
c: =>2sin(x-pi/6)=-căn 3
=>sin(x-pi/6)=-căn 3/2
=>x-pi/6=-pi/3+k2pi hoặc x-pi/6=4/3pi+k2pi
=>x=-1/6pi+k2pi hoặc x=3/2pi+k2pi
d: =>2sin(x+10 độ)=-căn 3
=>sin(x+10 độ)=-căn 3/2
=>x+10 độ=-60 độ+k*360 độ hoặc x+10 độ=240 độ+k*360 độ
=>x=-70 độ+k*360 độ hoặc x=230 độ+k*360 độ
e: \(\Leftrightarrow2\cdot sin\left(x-15^0\right)=-\sqrt{2}\)
=>\(sin\left(x-15^0\right)=-\dfrac{\sqrt{2}}{2}\)
=>x-15 độ=-45 độ+k*360 độ hoặc x-15 độ=225 độ+k*360 độ
=>x=-30 độ+k*360 độ hoặc x=240 độ+k*360 độ
f: \(\Leftrightarrow sin\left(x-\dfrac{pi}{3}\right)=-\dfrac{1}{\sqrt{2}}\)
=>x-pi/3=-pi/4+k2pi hoặc x-pi/3=5/4pi+k2pi
=>x=pi/12+k2pi hoặc x=19/12pi+k2pi
g) \(3+\sqrt[]{5}sin\left(x+\dfrac{\pi}{3}\right)=0\)
\(\Leftrightarrow sin\left(x+\dfrac{\pi}{3}\right)=-\dfrac{3}{\sqrt[]{5}}\)
\(\Leftrightarrow sin\left(x+\dfrac{\pi}{3}\right)=sin\left[arcsin\left(-\dfrac{3}{\sqrt[]{5}}\right)\right]\)
\(\Leftrightarrow\left[{}\begin{matrix}x+\dfrac{\pi}{3}=arcsin\left(-\dfrac{3}{\sqrt[]{5}}\right)+k2\pi\\x+\dfrac{\pi}{3}=\pi-arcsin\left(-\dfrac{3}{\sqrt[]{5}}\right)+k2\pi\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x=arcsin\left(-\dfrac{3}{\sqrt[]{5}}\right)-\dfrac{\pi}{3}+k2\pi\\x=\dfrac{2\pi}{3}-arcsin\left(-\dfrac{3}{\sqrt[]{5}}\right)+k2\pi\end{matrix}\right.\)
h) \(1+sin\left(x-30^o\right)=0\)
\(\Leftrightarrow sin\left(x-30^o\right)=-1\)
\(\Leftrightarrow sin\left(x-30^o\right)=sin\left(-90^o\right)\)
\(\Leftrightarrow\left[{}\begin{matrix}x-30^o=-90^0+k360^o\\x-30^o=180^o+90^0+k360^o\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x=-60^0+k360^o\\x=300^0+k360^o\end{matrix}\right.\)
\(\Leftrightarrow x=-60^0+k360^o\)
\(f\left(x\right)=2-9x^2+x\)
\(=2-9\left(x^2-\frac{x}{9}\right)\)
\(=2-9\left(x^2-2.x.\frac{1}{18}+\frac{1}{324}-\frac{1}{324}\right)\)
\(=2-9\left(x-\frac{1}{18}\right)^2+\frac{1}{36}\)
\(=\frac{73}{36}-9\left(x-\frac{1}{18}\right)^2\)
Vì \(-9\left(x-\frac{1}{18}\right)^2\le0;\forall x\)
\(\Rightarrow\frac{73}{36}-9\left(x-\frac{1}{18}\right)^2\le\frac{73}{36};\forall x\)
Dấu"="xảy ra \(\Leftrightarrow\left(x-\frac{1}{18}\right)^2=0\Leftrightarrow x=\frac{1}{18}\)
Vậy MAX\(f\left(x\right)=\frac{73}{36}\Leftrightarrow x=\frac{1}{18}\)
\(-1\le sin\left(x+\dfrac{\pi}{3}\right)\le1\Rightarrow-2\le2sin\left(x+\dfrac{\pi}{3}\right)\le2\)
\(\Rightarrow1\le y\le5\)
\(y_{min}=1\) khi \(sin\left(x+\dfrac{\pi}{3}\right)=1\Rightarrow x=\dfrac{\pi}{6}+k2\pi\)
\(y_{max}=5\) khi \(sin\left(x+\dfrac{\pi}{3}\right)=-1\Rightarrow x=-\dfrac{5\pi}{6}+k2\pi\)
Lời giải:
Vì $\sin (x+\frac{\pi}{3})\in [-1;1]$
$\Rightarrow y=-2\sin (x+\frac{\pi}{3})+3\in [1;5]$
Vậy $y_{\min}=1$ và $y_{\max}=5$