Cho x,y,z là các số thực tm \(\dfrac{3}{2}x^2+y^2+z^2+yz=1\).Tìm MIN,MAX \(P=x+y+z\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\dfrac{x}{x^2+yz}+\dfrac{y}{y^2+zx}+\dfrac{z}{z^2+xy}\le\dfrac{x}{2\sqrt{x^2yz}}+\dfrac{y}{2\sqrt{y^2zx}}+\dfrac{z}{2\sqrt{z^2xy}}=\dfrac{1}{2}\left(\dfrac{1}{\sqrt{yz}}+\dfrac{1}{\sqrt{zx}}+\dfrac{1}{\sqrt{xy}}\right)\le\dfrac{1}{2}\left(\dfrac{1}{x}+\dfrac{1}{y}+\dfrac{1}{z}\right)=\dfrac{3}{2}\).
Đẳng thức xảy ra khi x = y = z = 1.
Ta có:
\(\left(x-y\right)^2+\left(x-z\right)^2\ge0\)
\(\Leftrightarrow\left(x-y\right)^2+\left(x-z\right)^2+\left(x+y+z\right)^2\ge\left(x+y+z\right)^2\)
\(\Leftrightarrow x^2-2xy+y^2+x^2-2xz+z^2+x^2+y^2+z^2+2\left(xy+yz+xz\right)\ge A^2\)
\(\Leftrightarrow A^2\le2\left(y^2+yz+z^2\right)+3x^2=36\)
\(\Leftrightarrow-6\le A\le6\)
\(Q\ge2\left(x+y+z\right)+3.\frac{9}{x+y+z}=2\left(x+y+z\right)+\frac{27}{x+y+z}.\)
Đặt X+Y+Z=t (\(t\le1\))
\(Q\ge2t+\frac{27}{t}=\left(2t+\frac{2}{t}\right)+\frac{25}{t}\ge2\sqrt{2t.\frac{2}{t}}+\frac{25}{1}=4+25=29\\ \)
Dấu = xảy ra khi x=y=z=1/3
Theo bđt cô si ta có : \(x+y+z\ge3\sqrt[3]{xyz}\) và \(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}\ge3\sqrt[3]{\frac{1}{xyz}}\)
=> \(Q\ge6\sqrt[3]{xyz}+9\sqrt[3]{\frac{1}{xyz}}\ge2\sqrt{6\sqrt[3]{xyz}\cdot9\sqrt[3]{\frac{1}{xyz}}}=6\sqrt{6}\)
Dấu = xảy ra khi : \(6\sqrt[3]{xyz}=9\sqrt[3]{\frac{1}{xyz}}\) Giải ra ta đc : \(xyz=\frac{3}{2}\sqrt{\frac{3}{2}}\)
1. 1/x + 2/1-x = (1/x - 1) + (2/1-x - 2) + 3
= 1-x/x + (2-2(1-x))/1-x + 3
= 1-x/x + 2x/1-x + 3 >= 2√2 + 3
Dấu "=" xảy ra khi x =√2 - 1
2. a = √z-1, b = √x-2, c = √y-3 (a,b,c >=0)
=> P = √z-1 / z + √x-2 / x + √y-3 / y
= a/a^2+1 + b/b^2+2 + c/c^2+3
a^2+1 >= 2a => a/a^2+1 <= 1/2
b^2+2 >= 2√2 b => b/b^2+2 <= 1/2√2
c^2+3 >= 2√3 c => c/c^2+3 <= 1/2√3
=> P <= 1/2 + 1/2√2 + 1/2√3
Dấu = xảy ra khi a^2 = 1, b^2 = 2, c^2 =3
<=> z-1 = 1, x-2 = 2, y-3 = 3
<=> x=4, y=6, z=2
Áp dụng BĐT Cauchy=Schwarz ta có:
\(x^2+y^2+z^2\ge\frac{\left(x+y+z\right)^2}{3}\Rightarrow x+y+z\le\sqrt{3}\)
Ta lại có:\(\left(x-y\right)^2+\left(y-z\right)^2+\left(z-x\right)^2\ge0\forall x,y,z\)
\(\Leftrightarrow2\left(x^2+y^2+z^2\right)-2\left(xy+yz+zx\right)\ge0\)
\(\Leftrightarrow x^2+y^2+z^2\ge xy+yz+zx\)
\(\Rightarrow A\le\sqrt{3}+1\)
Dấu '=' xảy ra khi \(x=y=z=\frac{1}{\sqrt{3}}\)
Em làm lại,cách này mà còn sai nữa thì em xin hàng ạ! Dù sao đi nữa cũng xin mọi người chịu khó góp ý giúp em để em càng ngày càng tiến bộ hơn nữa ạ! Thanks all !
*Tìm min
Đặt p = x + y + z; q = xy + yz + zx thì \(x^2+y^2+z^2=p^2-2q=1\Rightarrow q=\frac{p^2-1}{2}\)
Suy ra \(A=p+q=p+\frac{p^2-1}{2}=\frac{p^2+2p-1}{2}\)
\(=\frac{p^2+2p+1-2}{2}=\frac{\left(p+1\right)^2-2}{2}\ge-\frac{2}{2}=-1\)
Vậy giá trị nhỏ nhất của A là -1.
Dấu "=" xảy ra khi (x;y;z) = (0;0;-1) (chỗ này em không biết giải rõ thế nào nữa :v)
*Tìm max
Ta có BĐT sau: \(xy+yz+zx\le\frac{\left(x+y+z\right)^2}{3}\le x^2+y^2+z^2\)
Suy ra \(q\le\frac{p^2}{3}\le p^2-2q=1\) suy ra \(\hept{\begin{cases}q\le p^2-2q=1\\p^2\le3\left(p^2-2q\right)\end{cases}}\Leftrightarrow\hept{\begin{cases}q\le1\\p\le\sqrt{3\left(p^2-2q\right)}=\sqrt{3}\end{cases}}\)
Suy ra \(A=p+q\le\sqrt{3}+1\)
\(\frac{3}{2}x^2+y^2+z^2+yz=1\Leftrightarrow3x^2+2y^2+2z^2+2yz=2\)
\(\Leftrightarrow\left(x+y+z\right)^2+\left(x-y\right)^2+\left(x-z\right)^2+\left(y+z\right)^2=2\)
\(\Rightarrow\left(x+y+z\right)^2\le2\)
\(\Rightarrow-\sqrt{2}\le x+y+z\le\sqrt{2}\)
Từ đó tìm được MAX
Lời giải:
Áp dụng BĐT AM-GM thì:
$1=\frac{3}{2}x^2+y^2+z^2+yz=\frac{3}{2}x^2+(y+z)^2-yz\geq \frac{3}{2}x^2+(y+z)^2-\frac{(y+z)^2}{4}=\frac{3}{2}x^2+\frac{3}{4}(y+z)^2$
Áp dụng BĐT Bunhiacopxky:
$P^2=(x+y+z)^2\leq [\frac{3}{2}x^2+\frac{3}{4}(y+z)^2](\frac{2}{3}+\frac{4}{3})\leq 1.2$
$\Leftrightarrow P^2\leq 2$
$\Rightarrow -\sqrt{2}\leq P\leq \sqrt{2}$
Vậy $P_{\min}=-\sqrt{2}$ tại \((x,y,z)=(\frac{-\sqrt{2}}{3};\frac{-\sqrt{2}}{3}; \frac{-\sqrt{2}}{3}) \)
$P_{\max}=\sqrt{2}$ tại \((x,y,z)=(\frac{\sqrt{2}}{3}, \frac{\sqrt{2}}{3}, \frac{\sqrt{2}}{3})\)