K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

\(A=2^{2017}+2^{2016}+...+2+1\)

\(\Leftrightarrow2A=2^{2018}+2^{2017}+...+2^2+2\)

\(\Leftrightarrow A=2^{2018}-1\)

\(B=2^{2018}-2^{2017}-2^{2016}-...-2-1\)

\(=2^{2018}-A=1\)

4 tháng 1 2024

\(B=2^{2018}-2^{2017}-2^{2016}-2^{2015}-2^{2014}\)

\(=>2B=2^{2019}-2^{2018}-2^{2017}-2^{2016}-2^{2015}\)

\(=>2B+B=2^{2019}-2^{2014}\)

\(=>B=\dfrac{2^{2019}-2^{2014}}{3}\)

21 tháng 11 2023

2^2018-2017=2^2=4

21 tháng 11 2023

22018 - 22017 = 22018-2017= 21 =2 

1 tháng 9 2023

a) \(A=1+2+2^2+...+2^{80}\)

\(2A=2+2^2+2^3+...+2^{81}\)

\(2A-A=2+2^2+2^3+...+2^{81}-1-2-2^2-...-2^{80}\)

\(A=2^{81}-1\)

Nên A + 1 là:

\(A+1=2^{81}-1+1=2^{81}\)

b) \(B=1+3+3^2+...+3^{99}\)

\(3B=3+3^2+3^3+...+3^{100}\)

\(3B-B=3+3^2+3^3+...+3^{100}-1-3-3^2-...-3^{99}\)

\(2B=3^{100}-1\)

Nên 2B + 1 là:

\(2B+1=3^{100}-1+1=3^{100}\)

1 tháng 9 2023

2) 

a) \(2^x\cdot\left(1+2+2^2+...+2^{2015}\right)+1=2^{2016}\)

Gọi:

\(A=1+2+2^2+...+2^{2015}\)

\(2A=2+2^2+2^3+...+2^{2016}\)

\(A=2^{2016}-1\)

Ta có:

\(2^x\cdot\left(2^{2016}-1\right)+1=2^{2016}\)

\(\Rightarrow2^x\cdot\left(2^{2016}-1\right)=2^{2016}-1\)

\(\Rightarrow2^x=\dfrac{2^{2016}-1}{2^{2016}-1}=1\)

\(\Rightarrow2^x=2^0\)

\(\Rightarrow x=0\)

b) \(8^x-1=1+2+2^2+...+2^{2015}\)

Gọi: \(B=1+2+2^2+...+2^{2015}\)

\(2B=2+2^2+2^3+...+2^{2016}\)

\(B=2^{2016}-1\)

Ta có:

\(8^x-1=2^{2016}-1\)

\(\Rightarrow\left(2^3\right)^x-1=2^{2016}-1\)

\(\Rightarrow2^{3x}-1=2^{2016}-1\)

\(\Rightarrow2^{3x}=2^{2016}\)

\(\Rightarrow3x=2016\)

\(\Rightarrow x=\dfrac{2016}{3}\)

\(\Rightarrow x=672\)

16 tháng 3 2023

Cảm ơn bạn ạ

Sửa đề: A=2+2^2+2^3+...+2^2017

=>2*A=2^2+2^3+2^4+...+2^2018

=>2A-A=2^2018-2

=>A=2^2018-2

16 tháng 10 2023

\(S=2+2.2^2+3.2^3+...+2016.2^{2016}\)

\(2S=2^2+2.2^3+3.2^4+...+2016.2^{2017}\)

\(2S-S=S=\text{​​}\text{​​}\text{​​}\text{​​}2^2+2.2^3+3.2^4+...+2016.2^{2017}-2-2.2^2-3.2^3-...-2016.2^{2016}\)

\(S=2\left(0-1\right)+2^2\left(1-2\right)+2^3\left(2-3\right)+...+2^{2016}\left(2015-2016\right)+2^{2017}.2016\)

\(S=-\left(2+2^2+2^3+...+2^{2016}\right)+2^{2017}.2016\)

\(\)Đặt \(A=2+2^2+2^3+...+2^{2016}\)

\(2A=2^2+2^3+2^4+...+2^{2017}\)

\(2A-A=A=2^2+2^3+2^4+...+2^{2017}-2-2^2-2^3-...-2^{2016}\)

\(A=2^{2017}-2\)

Thay vào S ta được:
\(S=-2^{2017}+2+2^{2017}.2016\)

\(S=2^{2017}.2015+2\)

Ta có \(S+2013=2^{2017}.2015+2+2013\)

\(S+2013=2^{2017}.2015+2015\)

\(S+2013=2015\left(2^{2017}+1\right)\)

Suy ra \(S+2013⋮2^{2017}+1\)

Vậy \(S+2013⋮2^{2017}+1\) (đpcm)

16 tháng 10 2023

cái này dễ lắm lun

 

5 tháng 2 2019

c)  2 2016 . 2 x - 1 = 2 2015

2 x - 1 = 2 2015 : 2 2016

2 x - 1 = 2 2015 - 2016

2 x - 1 = 2 - 1

⇒ x – 1 = -1

x = -1 + 1

x = 0

25 tháng 8 2023

\(A=1+2^1+2^2+...+2^{2015}\)

\(2\cdot A=2^1+2^2+2^3+...+2^{2015}+2^{2016}\)

\(2A-A=2^1+2^2+2^3+...+2^{2015}+2^{2016}-\left(1+2^1+2^2+...+2^{2015}\right)\)

\(A=2^{2016}-1\)