Từ điểm A nằm ngoài đường tròn (O;R) vẽ hai tiếp tuyến AB , AC (C, B là tiếp điểm) của (O;R), OA cắt BC tại H.
a) Chứng minh: Tứ giác ABOC nội tiếp được đường tròn, xác định tâm của đường tròn đó.
b) Kẻ các tuyến AMN (M nằm giữa A và N, MN không đi qua điểm O). Chứng minh: AH.AO = AM.AN
c) Gọi K là trung điểm của MN, OK cắt BC tại P. Chứng minh : \(\widehat{OCK}\) = \(\widehat{OBK}\) .
a: Xét tứ giác ABOC có \(\widehat{ABO}+\widehat{ACO}=180^0\)
nên ABOC là tứ giác nội tiếp
Tâm là trug điểm của AO
b: Xét (O) có
AB là tiếp tuýen
AC là tiếp tuyến
Do đó: AB=AC
mà OB=OC
nên OA là đường trung trực của BC
Xét ΔOBA vuông tại B có BH là đường cao
nên \(AH\cdot AO=AB^2\left(1\right)\)
Xét ΔABM và ΔANB có
\(\widehat{ABM}=\widehat{ANB}\)
\(\widehat{BAM}\) chung
Do đo; ΔABM\(\sim\)ΔANB
Suy ra: AB/AN=AM/AB
hay \(AB^2=AN\cdot AM\left(2\right)\)
Từ (1) và (2) suy ra \(AH\cdot AO=AM\cdot AN\)