+Chứng minh:
\(a^7-a\text{ }⋮\text{ }7\text{ }\left(a\in Z\right)\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: Vì 3 là số nguyên tố nên theo ĐỊnh lí nhỏ Fermat, ta được:
\(a^3-a⋮3\)
b: Vì 7 là số nguyên tố nên theo định lí nhỏ Fermat,ta được:
\(a^7-a⋮7\)
ta có:A= \(a^3-a=a\left(a^2-1\right)=a\left(a-1\right)\left(a+1\right)\)
vì a, a-1,a+1 là ba số nguyên liên tiếp => A chia hết cho 3
Vì n lẻ nên n=2k+1
\(n^4-10n^2+9\)
\(=\left(n^2-1\right)\left(n^2-9\right)\)
\(=\left(n-1\right)\left(n+1\right)\left(n-3\right)\left(n+3\right)\)
\(=\left(2k+1-1\right)\left(2k+1+1\right)\left(2k+1-3\right)\left(2k+1+3\right)\)
\(=2k\cdot\left(2k+2\right)\cdot\left(2k-2\right)\cdot\left(2k+4\right)\)
\(=16k\left(k+1\right)\left(k-1\right)\left(k+2\right)\)
Vì k-1;k+1;k;k+2 là bốn số liên tiếp
nên \(\left(k-1\right)\cdot k\cdot\left(k+1\right)\cdot\left(k+2\right)⋮4!=24\)
\(\Leftrightarrow16k\left(k+1\right)\left(k-1\right)\left(k+2\right)⋮384\)
\(g\left(x\right)=0\Leftrightarrow x=-\sqrt{7-4\sqrt{3}}=-\sqrt{\left(2-\sqrt{3}\right)^2}=\sqrt{3}-2\)
\(g\left(\sqrt{3}-2\right)=0\Rightarrow f\left(\sqrt{3}-2\right)=0\)
\(\Rightarrow7-4\sqrt{3}-4ab\left(\sqrt{3}-2\right)+2a+3=0\)
\(\Leftrightarrow\sqrt{3}\left(-4-4ab\right)+\left(8ab+2a+10\right)=0\text{ }\left(1\right)\)
Do a, b là các số hữu tỉ nên (1) đúng khi và chỉ khi
\(\int^{-4-4ab=0}_{8ab+2a+10=0}\Leftrightarrow\int^{a=-1}_{b=1}\)
Vậy, \(a=-1;\text{ }b=1.\)
f(x) chia hết cho g(x)
Nếu g(x) =0 hay x = - \(\sqrt{7-4\sqrt{3}}=1-\sqrt{6}\)
=> f( \(1-\sqrt{6}\)) =0
=> \(\left(1-\sqrt{6}\right)^2-4ab\left(1-\sqrt{6}\right)+2a+3=0\)(1)
Cái thứ (2) sử dụng cái gì vậy??? chỉ mình với?
A=a^7 -a =a(a^6 -1) =a(a^3 -1)(a^3+1) =(a-1).a.(a+1)[a^2+a+1)(a^2-a+1) ]
\(A=A_0.A_1\)
\(A_1=\left(a^2+a+1\right)\left(a^2-a+1\right)=\left[\left(a^2-4\right)+\left(a+5\right)\right]\left[\left(a^2-9\right)+\left(-a+10\right)\right]\)
\(A_1=\left[\left(a^2-4\right)\left(a^2-9\right)\right]+\left[\left(a^2-4\right)\left(-a+10\right)+\left(a+5\right)\left(a^2-a+1\right)\right]=A_2+A_3\)
\(A_3=\left(a^2-4\right)\left(-a+10\right)+\left(a+5\right)\left(a^2-a+1\right)=-a^3+10a^2+4a-40+a^3-a^2+a+5a^2-5a+5=14a^2-35\)\(A_3=7\left(2a^2-5\right)\)
\(A=A_0.A_1=A_0\left(A_2+A_3\right)=A_0.A_2+A_0.A_3\)
A3 : chia hết cho 7 hiển nhiên => \(A_0.A_3⋮7\)
\(A_0.A_2=a\left(a-1\right)\left(a+1\right)\left(a^2-4\right)\left(a^2-9\right)\)
\(A_0A_2=\left(a-3\right)\left(a-2\right)\left(a-1\right)\left(a\right)\left(a+1\right)\left(a+2\right)\left(a+3\right)\)
A0.A2 là tích 7 số nguyên liên tiếp => A0.A2 chia hết cho 7
=>\(A⋮7\) =>dpcm
Ủa cái này là Fermat nhỏ mà.