các bạn chứng tỏ rằng :
n.(n+13) chia het cho 2
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
1. + Nếu n chẵn => n(n + 3) chẵn
+ Nếu n lẻ => n + 3 chẵn => n(n + 3) chẵn
Chứng tỏ tích n(n + 3) luôn chẵn với mọi số tự nhiên n
2. a = 911 + 1
a = 910 . 9 + 1
a = (92)5 . 9 + 1
a = (...1)5 . 9 + 1
a = (...1) . 9 + 1
a = (...9) + 1
a = (...0) chia hết cho 2 và 5
Chứng tỏ số a = 911 + 1 chia hết cho cả 2 và 5
1) n(n+3)=n.n+n.3
nếu n là số lẻ thì n.n=số lẻ và n.3 = số lẻ;số lẻ + số lẻ = số chẵn
nếu n là số chẵn thì n.n=số chẵn và n.3 =số chẵn;số chẵn + số chẵn
9 mũ 1 = 9
9 mũ 2 = 81
9 mũ 3 =729
9 mũ 4 = ...1
9 mũ 5 = ...9
=>9 mũ 11 =...9
...9+1=...0
những số có chữ số tận cùng là 0 sẽ chia hết cho cả 2 và 5
Ta có: n^2 + n + 2 = n(n+1) + 2.
n(n+1) là tích của 2 số tự nhiên liên liên tiếp nên có chữ số tận cùng là 0; 2; 6.
Suy ra: n(n+1)+2 có chữ số tận cùng là 2; 4; 8.
Mà: 2; 4; 8 không chia hết cho 5.
Nên: n(n+1)+2 không chia hết cho 5.
Vậy: n^2 + n+2 không chia hết cho 15 với mọi n thuộc N(đpcm)
Bài 1
Gọi 3 số tự nhiên liên tiếp là n; n+1; n+2. Tổng của chúng là
n+n+1+n+2=3n+3=3(n+1) chia hết cho 3
Gọi 4 số tự nhiên liên tiếp là n; n+1; n+2; n+3. Tổng của chúng là
n+n+1+n+2+n+3=4n+6=4n+4+2=4(n+1)+2 chia cho 4 dư 2
Bài 2
(Xét tính chẵn hoặc lẻ của n)
+ Nếu n lẻ thì n+3 chẵn; n+6 lẻ => (n+3)(n+6) chẵn => chia hết cho 2
+ Nếu n chẵn thì n+3 lẻ, n+6 chẵn => (n+3)(n+6) chẵn => chia hết cho 2
=> (n+3)(n+6) chia hết cho 2 với mọi n
- Nếu n là số chẵn thì n.(n + 13) là số chẵn, chia hết cho 2
- Nếu n là số lẻ thì n + 13 là số chẵn nên n.(n + 13) là số chẵn, chia hết cho 2
Vậy A = n. ( n+13) chia hết cho 2 với mọi số tự nhiên n