Cho đơn thức :
A=3.(\(a^2+\dfrac{1}{a^2}\)). x2.y4
a, Chứng minh rằng : A luôn > 0 với mọi x
b,Tìm x,y,z để A=0
Ai làm nhanh nhất thì mk tick nha!! Cảm ơn!!
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) \(x^2+xy+y^2+1\)
\(=x^2+xy+\dfrac{y^2}{4}-\dfrac{y^2}{4}+y^2+1\)
\(=\left(x+\dfrac{y}{2}\right)^2+\dfrac{3y^2}{4}+1\)
mà \(\left\{{}\begin{matrix}\left(x+\dfrac{y}{2}\right)^2\ge0,\forall x;y\\\dfrac{3y^2}{4}\ge0,\forall x;y\end{matrix}\right.\)
\(\Rightarrow\left(x+\dfrac{y}{2}\right)^2+\dfrac{3y^2}{4}+1>0,\forall x;y\)
\(\Rightarrow dpcm\)
b) \(...=x^2-2x+1+4\left(y^2+2y+1\right)+z^2-6z+9+1\)
\(=\left(x-1\right)^2+4\left(y^{ }+1\right)^2+\left(z-3\right)^2+1>0,\forall x.y\)
\(\Rightarrow dpcm\)
\(A=3\left(a^2+\left(\frac{1}{a}\right)^2\right)x^2y^4z^6\)
Ta có : \(a^2;\left(\frac{1}{a}\right)^2\ge0\forall a\Rightarrow3\left(a^2+\left(\frac{1}{a}\right)^2\right)\ge0\forall a\)
\(x^2;y^4;z^6\ge0\forall x;y;z\)
=> \(A=3\left(a^2+\left(\frac{1}{a}\right)^2\right)x^2y^4z^6\ge0\)
=> A luôn nhận giá trị không âm với mọi x, y, z
Để A = 0 => Ít nhất một giá trị = 0
=> Hoặc x = 0 ; y = 0 ; z = 0 thì A = 0
\(1)\)
\(a)\)\(A=5-8x-x^2\)
\(A=-\left(x^2+8x+16\right)+21\)
\(A=-\left(x+4\right)^2+21\le21\)
Dấu "=" xảy ra \(\Leftrightarrow\)\(-\left(x+4\right)^2=0\)
\(\Leftrightarrow\)\(x=-4\)
Vậy GTLN của \(A\) là \(21\) khi \(x=-4\)
\(b)\)\(B=5-x^2+2x-4y^2-4y\)
\(-B=\left(x^2-2x+1\right)+\left(4y^2+4y+1\right)-7\)
\(-B=\left(x-1\right)^2+\left(2y+1\right)^2-7\ge-7\)
\(B=-\left(x-1\right)^2-\left(2y+1\right)^2+7\le7\)
Dấu "=" xảy ra \(\Leftrightarrow\)\(\hept{\begin{cases}-\left(x-1\right)^2=0\\-\left(2y+1\right)^2=0\end{cases}\Leftrightarrow\hept{\begin{cases}x=1\\y=\frac{-1}{2}\end{cases}}}\)
Vậy GTLN của \(B\) là \(7\) khi \(x=1\) và \(y=\frac{-1}{2}\)
Chúc bạn học tốt ~
\(2)\)\(A=\left(3+1\right)\left(3^2+1\right)\left(3^4+1\right).....\left(3^{64}+1\right)\)
\(2A=2\left(3+1\right)\left(3^2+1\right)\left(3^4+1\right).....\left(3^{64}+1\right)\)
\(2A=\left(3-1\right)\left(3+1\right)\left(3^2+1\right)\left(3^4+1\right).....\left(3^{64}+1\right)\)
\(2A=\left(3^2-1\right)\left(3^2+1\right)\left(3^4+1\right).....\left(3^{64}+1\right)\)
\(2A=\left(3^4-1\right)\left(3^4+1\right).....\left(3^{64}+1\right)\)
\(............\)
\(2A=\left(3^{64}-1\right)\left(3^{64}+1\right)\)
\(2A=3^{128}-1\)
\(A=\frac{2^{128}-1}{3}\)
Chúc bạn học tốt ~
a, Với x=2
PT<=> 4+2(m-2)-m+1=0
<=> m=-1
Vậy m=-1 thì phương trình có 1 nghiệm x=2
Ý sau dùng hệ thức Vi-et là ra
Ta có: \(a^2,x^2,y^4,z^6\ge0\)với \(\forall a,x,y,z\)
Dấu "=" xảy ra khi \(a=x=y=z=0\)
Lại có: \(3\left(a^2+\frac{1}{a^2}\right)\)khác 0 với \(\forall a\)
Do đó để A = 0 thì x = 0 hoặc y = 0 hoặc z = 0
\(A=3.\left(a^2+\dfrac{1}{a^2}\right).x^2.y^2\)
a) \(x=0\Rightarrow A=0\)=> điều cần chứng minh Sai
b)ta có : \(\left\{{}\begin{matrix}3.\left(a^2+\dfrac{1}{a^2}\right)\ne0\forall a\ne0\\x^2\ge0\\y^2\ge0\end{matrix}\right.\)
\(A=0\Leftrightarrow\left[{}\begin{matrix}x=0\\y=0\end{matrix}\right.\) => các cặp nghiệm \(\left(x;y;z\right)=\left(0;\forall y;\forall z\right);\left(\forall x;0;\forall z\right)\)