Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(A=3\left(a^2+\left(\frac{1}{a}\right)^2\right)x^2y^4z^6\)
Ta có : \(a^2;\left(\frac{1}{a}\right)^2\ge0\forall a\Rightarrow3\left(a^2+\left(\frac{1}{a}\right)^2\right)\ge0\forall a\)
\(x^2;y^4;z^6\ge0\forall x;y;z\)
=> \(A=3\left(a^2+\left(\frac{1}{a}\right)^2\right)x^2y^4z^6\ge0\)
=> A luôn nhận giá trị không âm với mọi x, y, z
Để A = 0 => Ít nhất một giá trị = 0
=> Hoặc x = 0 ; y = 0 ; z = 0 thì A = 0
Ta có: \(a^2,x^2,y^4,z^6\ge0\)với \(\forall a,x,y,z\)
Dấu "=" xảy ra khi \(a=x=y=z=0\)
Lại có: \(3\left(a^2+\frac{1}{a^2}\right)\)khác 0 với \(\forall a\)
Do đó để A = 0 thì x = 0 hoặc y = 0 hoặc z = 0
a: A=2/3*3/2*xy^2*x=x^2y^2
b: Bậc là 4
c: Khi x=-1 và y=2 thì A=(-1)^2*2^2=4
d: A=(xy)^2>0 khi x<>0 và y<>0
1)Đặt A= -125- ( x - 4)2 - ( y- 5 )2
Ta thấy:\(\begin{cases}-\left(x-4\right)^2\le0\\-\left(y-5\right)^2\le0\end{cases}\)
\(\Rightarrow-\left(x-4\right)^2-\left(y-5\right)^2\le0\)
\(\Rightarrow-125-\left(x-4\right)^2-\left(y-5\right)^2\le-125-0\)
\(\Rightarrow A\le-125\)
Dấu "=" xảy ra khi \(\begin{cases}-\left(x-4\right)^2=0\\-\left(y-5\right)^2=0\end{cases}\)\(\Leftrightarrow\begin{cases}x=4\\y=5\end{cases}\)
Vậy...
\(A=3.\left(a^2+\dfrac{1}{a^2}\right).x^2.y^2\)
a) \(x=0\Rightarrow A=0\)=> điều cần chứng minh Sai
b)ta có : \(\left\{{}\begin{matrix}3.\left(a^2+\dfrac{1}{a^2}\right)\ne0\forall a\ne0\\x^2\ge0\\y^2\ge0\end{matrix}\right.\)
\(A=0\Leftrightarrow\left[{}\begin{matrix}x=0\\y=0\end{matrix}\right.\) => các cặp nghiệm \(\left(x;y;z\right)=\left(0;\forall y;\forall z\right);\left(\forall x;0;\forall z\right)\)