\(\Delta_1=\left(4m+3n\right)^2+36\)> 0 với mọi m;n => (1) luôn có hai nghiệm
có tích hai nghiệm = -9 không phụ thuộc m;n
để tương đương => (2) phải có hai nghiệm giống (1)
\(\left\{{}\begin{matrix}\Delta_2'=\left(m+2\right)^2-3n>0\\x_1..x_2=3n=-9=>n=n=-3\end{matrix}\right.\) với n=-3 \(\Delta_2'=\left(m+2\right)^2+9>0\) đúng với m => nhận n =-3
Tất cảToánVật lýHóa họcSinh họcNgữ vănTiếng anhLịch sửĐịa lýTin họcCông nghệGiáo dục công dânÂm nhạcMỹ thuậtTiếng anh thí điểmLịch sử và Địa lýThể dụcKhoa họcTự nhiên và xã hộiĐạo đứcThủ côngQuốc phòng an ninhTiếng việtKhoa học tự nhiên
+Xét pt (1), ac < 0 => pt luôn có 2 nghiệm pb
Để 2 pt tương đương thì trước hết pt (2) cũng có 2 nghiệm pb
<=> 3n < 0 <=> n <0
+ Theo định lý Vi-et:
pt (1) : \(\left\{{}\begin{matrix}x_1+x_2=-4m-3n\\x_1x_2=-9\end{matrix}\right.\)
pt (2) : \(\left\{{}\begin{matrix}x_1+x_2=2m+4n\\x_1x_2=3n\end{matrix}\right.\)
pt (1) và (2) tương đương => \(\left\{{}\begin{matrix}-4m-3n=2m+4n\\3n=-9\end{matrix}\right.\)
(bạn tự giải tiếp nhé ^^!, tìm n từ phương trình dưới rồi thay vào pt trên tìm m)
x^2 +(4m+3n)x -9 =0 (1)
x^2 +(2m +4n)x +3n =0 (2)
\(\Delta_1=\left(4m+3n\right)^2+36\)> 0 với mọi m;n => (1) luôn có hai nghiệm
có tích hai nghiệm = -9 không phụ thuộc m;n
để tương đương => (2) phải có hai nghiệm giống (1)
\(\left\{{}\begin{matrix}\Delta_2'=\left(m+2\right)^2-3n>0\\x_1..x_2=3n=-9=>n=n=-3\end{matrix}\right.\) với n=-3 \(\Delta_2'=\left(m+2\right)^2+9>0\) đúng với m => nhận n =-3
tổng hai nghiệm bằng nhau
<=>\(x_{11}+x_{12}=x_{12}+x_{22}\Leftrightarrow\left(4m-9\right)=\left(2m-8\right)\Leftrightarrow2m=1;m=\dfrac{1}{2}\)
kết luận
\(\left\{{}\begin{matrix}m=\dfrac{1}{2}\\n=-3\end{matrix}\right.\)