Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
GIAI GIÚP EM VỚI
Giải pt chứa an ở mẫu sau
2x/x-3+x/x+3=2x^2/x^2-9
em sap thi rui ạ
\(\dfrac{2x}{x-3}+\dfrac{x}{x+3}=\dfrac{2x^2}{x^2-9}\left(ĐKXĐ:x\ne\pm3\right)\)
\(\Leftrightarrow\dfrac{2x\left(x+3\right)+x\left(x-3\right)}{\left(x-3\right)\left(x+3\right)}=\dfrac{2x^2}{\left(x-3\right)\left(x+3\right)}\)
\(\Rightarrow2x\left(x+3\right)+x\left(x-3\right)=2x^2\)
\(\Leftrightarrow2x^2+6x+x^2-3x-2x^2=0\)
\(\Leftrightarrow x^2+3x=0\)
\(\Leftrightarrow x\left(x+3\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x=0\\x+3=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=0\left(n\right)\\x=-3\left(l\right)\end{matrix}\right.\)
Vậy ............................
ĐKXĐ: x khác 3 và x khác -3
\(\dfrac{2x}{x-3}+\dfrac{x}{x+3}=\dfrac{2x^2}{x^2-9}\)
\(\Leftrightarrow\dfrac{2x\left(x+3\right)}{\left(x-3\right)\left(x+3\right)}+\dfrac{x\left(x-3\right)}{\left(x-3\right)\left(x+3\right)}=\dfrac{2x^2}{\left(x-3\right)\left(x+3\right)}\)
\(\Leftrightarrow2x^2+6x+x^2-3x=2x^2\)
\(\Leftrightarrow\left[{}\begin{matrix}x=0\\x=-3\left(loại\right)\end{matrix}\right.\)
Vậy......
\(\dfrac{2x}{x-3}+\dfrac{x}{x+3}=\dfrac{2x^2}{x^2-9}\left(ĐKXĐ:x\ne\pm3\right)\)
\(\Leftrightarrow\dfrac{2x\left(x+3\right)+x\left(x-3\right)}{\left(x-3\right)\left(x+3\right)}=\dfrac{2x^2}{\left(x-3\right)\left(x+3\right)}\)
\(\Rightarrow2x\left(x+3\right)+x\left(x-3\right)=2x^2\)
\(\Leftrightarrow2x^2+6x+x^2-3x-2x^2=0\)
\(\Leftrightarrow x^2+3x=0\)
\(\Leftrightarrow x\left(x+3\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x=0\\x+3=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=0\left(n\right)\\x=-3\left(l\right)\end{matrix}\right.\)
Vậy ............................
ĐKXĐ: x khác 3 và x khác -3
\(\dfrac{2x}{x-3}+\dfrac{x}{x+3}=\dfrac{2x^2}{x^2-9}\)
\(\Leftrightarrow\dfrac{2x\left(x+3\right)}{\left(x-3\right)\left(x+3\right)}+\dfrac{x\left(x-3\right)}{\left(x-3\right)\left(x+3\right)}=\dfrac{2x^2}{\left(x-3\right)\left(x+3\right)}\)
\(\Leftrightarrow2x^2+6x+x^2-3x=2x^2\)
\(\Leftrightarrow x^2+3x=0\)
\(\Leftrightarrow x\left(x+3\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x=0\\x=-3\left(loại\right)\end{matrix}\right.\)
Vậy......