Cho biểu thức \(A=\dfrac{2mx-5}{x^2+n^2}\). Tìm giá trị của m và n để biểu thức A có giá trị nhỏ nhất là -9 và giá trị lớn nhất là 4.
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
A = \(\dfrac{2x-1}{x+2}\)
a, A là phân số ⇔ \(x\) + 2 # 0 ⇒ \(x\) # -2
b, Để A là một số nguyên thì 2\(x-1\) ⋮ \(x\) + 2
⇒ 2\(x\) + 4 - 5 ⋮ \(x\) + 2
⇒ 2(\(x\) + 2) - 5 ⋮ \(x\) + 2
⇒ 5 ⋮ \(x\) + 2
⇒ \(x\) + 2 \(\in\) { -5; -1; 1; 5}
⇒ \(x\) \(\in\) { -7; -3; -1; 3}
c, A = \(\dfrac{2x-1}{x+2}\)
A = 2 - \(\dfrac{5}{x+2}\)
Với \(x\) \(\in\) Z và \(x\) < -3 ta có
\(x\) + 2 < - 3 + 2 = -1
⇒ \(\dfrac{5}{x+2}\) > \(\dfrac{5}{-1}\) = -5 ⇒ - \(\dfrac{5}{x+2}\)< 5
⇒ 2 - \(\dfrac{5}{x+2}\) < 2 + 5 = 7 ⇒ A < 7 (1)
Với \(x\) > -3; \(x\) # - 2; \(x\in\) Z ⇒ \(x\) ≥ -1 ⇒ \(x\) + 2 ≥ -1 + 2 = 1
\(\dfrac{5}{x+2}\) > 0 ⇒ - \(\dfrac{5}{x+2}\) < 0 ⇒ 2 - \(\dfrac{5}{x+2}\) < 2 (2)
Với \(x=-3\) ⇒ A = 2 - \(\dfrac{5}{-3+2}\) = 7 (3)
Kết hợp (1); (2) và(3) ta có A(max) = 7 ⇔ \(x\) = -3
a) Ta có: \(\left(2x-4\right)^4\ge0\forall x\)
\(\Leftrightarrow\left(2x-4\right)^4+5\ge5\forall x\)
Dấu '=' xảy ra khi 2x-4=0
\(\Leftrightarrow2x=4\)
hay x=2
Vậy: Giá trị nhỏ nhất của biểu thức \(M=\left(2x-4\right)^2+5\) là 5 khi x=2
b) Ta có: \(\left|x+2\right|\ge0\forall x\)
\(\Leftrightarrow-\left|x+2\right|\le0\forall x\)
\(\Leftrightarrow\left|x+2\right|+10\le10\forall x\)
Dấu '=' xảy ra khi x+2=0
hay x=-2
Vậy: Giá trị lớn nhất của biểu thức \(N=10-\left|x+2\right|\) là 10 khi x=-2
1, Ta có: 3-x2+2x=-(x2-2x+1)+4=-(x-1)2+4
vì (x-1)2 luôn lớn hơn hoặc bằng không với mọi x-->-(x-1)2 nhỏ hơn hoặc bằng 0 với mọi x
vậy giá trị lớn nhất của biểu thức 3-x2+2x là 4
các bài giá trị nhỏ nhất còn lại làm tương tự bạn nhé
chỉ cần đưa về nhân tử chung hoặc hằng đẳng thức là được
Lời giải:
$\frac{\sqrt{x}+1}{\sqrt{x}+4}=\frac{\sqrt{x}+4-3}{\sqrt{x}+4}=1-\frac{3}{\sqrt{x}+4}$
Vì $\sqrt{x}\geq 0$ nên $\sqrt{x}+4\geq 4$
$\Rightarrow \frac{3}{\sqrt{x}+4}\leq \frac{3}{4}$
$\Rightarrow \frac{\sqrt{x}+1}{\sqrt{x}+4}=1-\frac{3}{\sqrt{x}+4}\geq 1-\frac{3}{4}=\frac{1}{4}$
Vậy $M=\frac{1}{4}$
------------------
$N=\frac{\sqrt{x}+5}{\sqrt{x}+2}=1+\frac{3}{\sqrt{x}+2}$
Do $\sqrt{x}\geq 0$ nên $\sqrt{x}+2\geq 2$
$\Rightarrow \frac{3}{\sqrt{x}+2}\leq \frac{3}{2}$
$\Rightarrow \frac{\sqrt{x}+5}{\sqrt{x}+2}\leq 1+\frac{3}{2}=\frac{5}{2}$
Vậy $N=\frac{5}{2}$
$\Rightarrow 2M+N =2.\frac{1}{4}+\frac{5}{2}=3$
Đáp án C.
\(A=\dfrac{2mx-5}{x^2+n^2}\)
\(\Leftrightarrow Ax^2+An^2=2mx-5\)
\(\Leftrightarrow Ax^2-2mx+An^2+5=0\left(1\right)\)
A có cực trị khi (1) có nghiệm
\(\Leftrightarrow\Delta=4m^2-4A^2n^2-20A\ge0\)
\(\Leftrightarrow-A^2n^2-5A+m^2\ge0\left(1\right)\)
mà theo gt, ta có: \(\left\{{}\begin{matrix}A\ge-9\\A\le4\end{matrix}\right.\)
\(\Rightarrow\left(4-A\right)\left(A+9\right)\ge0\)
\(\Leftrightarrow-A^2-5A+36\ge0\left(2\right)\)
Từ (1) và (2) suy ra \(\left\{{}\begin{matrix}n^2=1\\m^2=36\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}n=\pm1\\m=\pm6\end{matrix}\right.\)
Vậy \(m=\pm6;n=\pm1\)
\(-9\le A\le4\)
\(\dfrac{2mx-5}{x^2+n^2}\ge-9\Leftrightarrow2mx-5\ge-9\left(x^2+n^2\right)\)
<=>. 9x^2 +2mx +9n^2 -5 >=0
\(\Delta\le0\Leftrightarrow m^2-9\left(9n^2-5\right)\le0\)<=> m^2 -(9n)^2 +9.5 <=0 (a)
\(\dfrac{2mx-5}{x^2+n^2}\le4\Leftrightarrow2mx-5\le4\left(x^2+n^2\right)\)
<=>4x^2 -2mx +4n^2 +5 >=0
delta(x) <=0 <=>m^2 -4(4n^2 +5) <=0 <=> m^2 -(4n)^2 -4.5 <=0 (b)
đẳng thức xẩy ra m;n thỏa mãn hệ
m^2 -(9n)^2 +9.5 =0(1)
m^2 -(4n)^2 -4.5 =0 (2)
<=> [(9n) -(4n)][(9n) +(4n)]=4.5+9.5
<=> 5.13n^2 =13.5
<=>n^2 =1 => m^2 =9^2 -9.5 =9.4 =(2.3)^2
các cặp số m;n thảo mãn
(m;n) =(6;1);(-6;1);(6;-1);(6;1)