Chứng minh rằng nếu a.b.c=a+b+c và 1/a+1/b+1/c=2 thì 1/a^2+1/b^2+1/c^2=2
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có : a + b + c = abc
\(\frac{\Rightarrow\left(a+b+c\right)}{abc}=\frac{abc}{abc}\)
\(\Rightarrow\frac{1}{ac}+\frac{1}{bc}+\frac{1}{ab}=1\)
Ta có: \(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}=2\)
\(\Rightarrow\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)^2=2^2\)
\(\Rightarrow\frac{1}{a^2}+\frac{1}{b^2}+\frac{1}{c^2}+\frac{2}{ab}+\frac{2}{bc}+\frac{2}{ac}=4\)
\(\Rightarrow\frac{1}{a^2}+\frac{1}{b^2}+\frac{1}{c^2}+2.\left(\frac{1}{ab}+\frac{1}{bc}+\frac{1}{ac}\right)=4\)
\(\Rightarrow\frac{1}{a^2}+\frac{1}{b^2}+\frac{1}{c^2}+2=4\)
\(\Rightarrow\frac{1}{a^2}+\frac{1}{b^2}+\frac{1}{c^2}=2\)
\(\text{Ta có: }\frac{1}{ab}+\frac{1}{bc}+\frac{1}{ac}=\frac{a+b+c}{abc}=\frac{abc}{abc}=1\left(\text{vì }a+b+c=abc\right)\)
\(\text{Lại có: }\frac{1}{a}+\frac{1}{b}+\frac{1}{c}=2\)
\(\Rightarrow\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)^2=4\)
\(\Rightarrow\frac{1}{a^2}+\frac{1}{b^2}+\frac{1}{c^2}+2.\left(\frac{1}{ab}+\frac{1}{bc}+\frac{1}{ac}\right)=4\)
\(\Rightarrow\frac{1}{a^2}+\frac{1}{b^2}+\frac{1}{c^2}=4-2.1=2\left(\text{ vì }\frac{1}{ab}+\frac{1}{bc}+\frac{1}{ac}=1\right)\)
Vậy ...
(a + b + c)² = a² + b² + c² + 2ab + 2bc + 2ac.
(1/a + 1/b + 1/c)² = 1/a² + 1/b² + 1/c² + 2(1/ab + 1/bc + 1/ac) = 4
<=> 1/a² + 1/b² + 1/c² + 2(bcac + abac + abbc)/(a²b²c²) = 4
<=> 1/a² + 1/b² + 1/c² + 2abc(a + b + c)/(a²b²c²) = 4
<=> 1/a² + 1/b² + 1/c² + 2 = 4
(vi` abc(a + b + c) = a² b² c²)
<=> 1/a² + 1/b² + 1/c² = 2 !!
Cho abc=0 thì không chứng minh được, a+b+c=0 là đủ rồi
Ta có: a+b+c=0 => a+b=-c
=>(a+b)2=(-c)2
=>a2+2ab+b2=c2
=>a2+b2-c2=-2ab
Tương tự ta có: b2+c2-a2=-2bc ; c2+a2-b2=-2ca
=>\(\frac{1}{b^2+c^2-a^2}+\frac{1}{c^2+a^2-b^2}+\frac{1}{a^2+b^2-c^2}=-\frac{1}{2bc}-\frac{1}{2ca}-\frac{1}{2ab}=\frac{a+b+c}{-2abc}=0\) (đpcm)
Cho \(abc=0\)thì không chứng minh được, \(a+b+c=0\)là đủ rồi.
Ta có: \(a+b+c=0\Rightarrow a+b=-c\)
\(\Rightarrow\left(a+b\right)^2=\left(-c\right)^2\)
\(\Rightarrow a^2+2ab+b^2=c^2\)
\(\Rightarrow a^2+b^2-c^2=-2ab\)
Tương tự ta có: \(b^2+c^2-a^2=-2ab;c^2+a^2-b^2=-2ca\)
\(\Rightarrow\frac{1}{b^2+c^2-a^2}+\frac{1}{c^2+a^2-b^2}+\frac{1}{a^2+b^2-c^2}=-\frac{1}{2bc}-\frac{1}{2ca}-\frac{1}{2ab}=\frac{a+b+c}{-2abc}=0\)
Chứng minh rằng nếu a,b,c \(\ge\)0 và abc=1 thì
\(\dfrac{1}{2+a}+\dfrac{1}{2+b}+\dfrac{1}{2+c}\le1\)
\(\Leftrightarrow\dfrac{\left(a+2\right)\left(b+2\right)+\left(b+2\right)\left(c+2\right)+\left(c+2\right)\left(a+2\right)}{\left(a+2\right)\left(b+2\right)\left(c+2\right)}\le1\)
\(\Leftrightarrow\dfrac{ab+bc+ca+4\left(a+b+c\right)+12}{abc+2\left(ab+bc+ca\right)+4\left(a+b+c\right)+8}\le1\)
\(\Leftrightarrow ab+bc+ca+12\le2\left(ab+bc+ca\right)+9\)
\(\Leftrightarrow ab+bc+ca\ge3\)
Hiển nhiên đúng do: \(ab+bc+ca\ge3\sqrt[3]{\left(abc\right)^2}=3\)
Vì abc=1 , ta đặt \(a=\dfrac{x}{y};b=\dfrac{y}{z};c=\dfrac{z}{x}\)
Điều phải chứng minh tương đương với:
\(\dfrac{1}{2+\dfrac{x}{y}}+\dfrac{1}{2+\dfrac{y}{z}}+\dfrac{1}{2+\dfrac{z}{x}}\le1\\ \Leftrightarrow\dfrac{y}{2y+x}+\dfrac{z}{2z+y}+\dfrac{x}{2x+z}\le1\\ \Leftrightarrow\dfrac{2y}{2y+x}+\dfrac{2z}{2z+y}+\dfrac{2x}{2x+z}\le2\\ \Leftrightarrow\dfrac{x}{2y+x}+\dfrac{y}{2z+y}+\dfrac{z}{2x+z}\ge1\left(1\right)\)
Áp dụng bất đẳng thức bunhiacopxki dạng phân thức ta có:
\(\dfrac{x}{2y+x}+\dfrac{y}{2z+x}+\dfrac{z}{2x+z}=\dfrac{x^2}{x^2+2xy}+\dfrac{y^2}{y^2+2zx}+\dfrac{z^2}{z^2+2xy}\ge\dfrac{\left(x+y+z\right)^2}{\left(x+y+z\right)^2}=1\)
=> bài toán được chứng minh
Dấu bằng xảy ra khi x=y=z=1 <=>a=b=c=1
Thôi câu đó mình làm được rồi, các bạn giúp mình câu này nha
Cho \(a>b\ge0\). CMR: \(\dfrac{a^4+b^4}{a^4-b^4}-\dfrac{ab}{a^2-b^2}+\dfrac{a+b}{2\left(a-b\right)}\ge\dfrac{3}{2}\)
\(\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c}=1\\ \to ab+bc+ca=abc=1\)
Ta có \(A=\left(a^2+ab+bc+ca\right)\left(b^2+ab+bc+ca\right)\left(c^2+ab+bc+ca\right)\)
\(\to A=\left(a+b\right)\left(a+c\right)\left(a+b\right)\left(b+c\right)\left(a+c\right)\left(b+c\right)\)
\(\to A=\left[\left(a+b\right)\left(b+c\right)\left(c+a\right)\right]^2\)
Vì $a,b,c\in \mathbb{Q}\to A\in \mathbb{Q}$
Bài toán cơ bản:
\(abc=1\Rightarrow\dfrac{a}{ab+a+1}+\dfrac{b}{bc+b+1}+\dfrac{c}{ac+c+1}=1\)
Bunhiacopxki:
\(\left(a+b+c\right)\left(\dfrac{a}{\left(ab+a+1\right)^2}+\dfrac{b}{\left(bc+b+1\right)^2}+\dfrac{c}{\left(ac+c+1\right)^2}\right)\ge\left(\dfrac{a}{ab+a+1}+\dfrac{b}{bc+b+1}+\dfrac{c}{ac+c+1}\right)^2=1\)
\(\Rightarrow\dfrac{a}{\left(ab+a+1\right)^2}+\dfrac{b}{\left(bc+b+1\right)^2}+\dfrac{c}{\left(ac+c+1\right)^2}\ge\dfrac{1}{a+b+c}\) (đpcm)
Dấu "=" xảy ra khi \(a=b=c\)
Theo gt, ta có: \(a+b+c=abc\)
\(\Leftrightarrow\dfrac{1}{bc}+\dfrac{1}{ac}+\dfrac{1}{ab}=1\)
Đặt \(\dfrac{1}{a}=x;\dfrac{1}{b}=y;\dfrac{1}{c}=z\)
\(\Rightarrow\left\{{}\begin{matrix}x+y+z=2\\xy+yz+xz=1\end{matrix}\right.\)
Mặt khác, ta có: \(\left(x+y+z\right)^2=x^2+y^2+z^2+2\left(xy+yz+xz\right)\)
\(\Rightarrow x^2+y^2+z^2=2^2-2\times1=2\)
hay \(\dfrac{1}{a^2}+\dfrac{1}{b^2}+\dfrac{1}{c^2}=2\)
Vậy ta có đpcm.