K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

24 tháng 2 2018

Thôi, ai tl thì khỏi tui giải đc r

a) Các đơn thức đồng dạng trong các đơn thức sau là: \(5x^2yz;-2x^2yz\) ; \(x^2yz\) ; \(0,2x^2yz\)

b) \(M\left(x\right)=3x^2+5x^3-x^2+x-3x-4\)

    \(M\left(x\right)=(3x^2-x^2)+5x^3+(x-3x)-4\)

    \(M\left(x\right)=2x^2+5x^3-2x-4\)

    \(M\left(x\right)=5x^3+2x^2-2x-4\)

c) \(P+Q=\left(x^3x+3\right)+\left(2x^3+3x^2+x-1\right)\)

   \(P+Q=x^3x+3+2x^3+3x^2+x-1\)

   \(P+Q=\left(x^3+2x^3\right)+\left(x+x\right)+\left(3-1\right)+3x^2\)

   \(P+Q=3x^3+2x+2+3x^2\)

    

    

   

5 tháng 4 2017

a/ -x2yz + 12x2yz - 10x2yz

= (-1 + 12 - 10)(x2yz)

= x2yz

b/ 12xy2z3 - 6xy2z3 + 20xy2z3

= (12 - 6 + 20)(xy2z3)

= 26xy2z3

5 tháng 3 2022

a, \(A=3xy^2\)

b, \(B=-6x^2y^4\)

c, \(C=\left(2+\dfrac{1}{3}-4\right)x^2yz^3=-\dfrac{5}{3}x^2yz^3\)

18 tháng 3 2021

\(ax^2yz+bx^2yz-\frac{1}{2}x^2yz\)

\(=x^2yz\left(a+b-\frac{1}{2}\right)=a+b-\frac{1}{2}\)

Vậy x = 1 ; y = -1 ; z = -1 thì biểu thức trên nhận giá trị \(a+b-\frac{1}{2}\)

NV
28 tháng 6 2019

a/ \(x\left(a+b\right)+y\left(a+b\right)=\left(x+y\right)\left(a+b\right)\)

b/ \(a\left(x+y\right)+b\left(x+y\right)-1\left(x+y\right)=\left(a+b-1\right)\left(x+y\right)\)

c/ \(=x^2z\left(x+y-z-yz\right)\)

Cách 1: Hàng ngang

\(A+B=\left(5x^2y+3xy^2+2yz\right)+\left(-5xy^2+2x^2y-2yz+2\right)\)

\(A+B=5x^2y+3xy^2+2yz-5xy^2+2x^2y-2yz+2\)

\(A+B=\left(5x^2y+2x^2y\right)+\left(3xy^2-5xy^2\right)+\left(2yz-2yz\right)+2\)

\(A+B=7x^2y-2xy^2+2\)

Cách 2: Hàng dọc

\(\begin{matrix}_+A\left(x\right)=5x^2y+3xy^2+2yz\\B\left(x\right)=2x^2y-5xy^2-2yz+2\\\overline{A\left(x\right)+B\left(x\right)=7x^2y-2xy^2+2}\end{matrix}\)

Bạn viết dấu " \(=\) "  thẳng hằng với nhau nhá

AH
Akai Haruma
Giáo viên
20 tháng 7 2020

Lời giải:

a)

$(x-z)^2+(y-z)^2+y^2+z^2=2xy-2yz+6z-9$

$\Leftrightarrow x^2-2xz+z^2+(y-z)^2+y^2+z^2-2xy+2yz-6z+9=0$

$\Leftrightarrow x^2-2x(z+y)+(z^2+y^2+2yz)+(y-z)^2+(z^2-6z+9)=0$

$\Leftrightarrow x^2-2x(y+z)+(y+z)^2+(y-z)^2+(z-3)^2=0$

$\Leftrightarrow (x-y-z)^2+(y-z)^2+(z-3)^2=0$
Vì $(x-y-z)^2\geq 0; (y-z)^2\geq 0; (z-3)^2\geq 0$ với mọi $x,y,z\in\mathbb{R}$ nên để tổng của chúng bằng $0$ thì:

$(x-y-z)^2=(y-z)^2=(z-3)^2=0$

$\Rightarrow z=3; y=3; x=6$

b)

$x^2+3y^2+z^2+2xy-2yz-2x+4y+10=0$

$\Leftrightarrow (x^2+2xy+y^2)+(y^2-2yz+z^2)+y^2-2x+4y+10=0$

$\Leftrightarrow (x+y)^2+(y-z)^2+y^2-2(x+y)+6y+10=0$

$\Leftrightarrow (x+y)^2-2(x+y)+1+(y-z)^2+(y^2+6y+9)=0$

$\Leftrightarrow (x+y-1)^2+(y-z)^2+(y+3)^2=0$ (lập luận tương tự phần a)

$\Leftrightarrow y=z=-3; x=4$

27 tháng 3 2022

Lớp 1 cơ ah bn, lớp 1 mà học chương trình mới quá hè

để chj hỏi Bộ Giáo Dục có cái tính đơn thức để lớp 1 hc ko 

mà thoy, tiện thể chj cs đứa e hc lớp 1 hỏi ns thử coi ns hc đơn thức này chx