Tìm x, y biết \(\dfrac{11}{17}< \dfrac{x}{y}< \dfrac{23}{29}\) và 9x=8y-31
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
8y - 9x = 31
<=> y = (31 + 9x)/8 (1)
ta có:
\(\dfrac{11}{17}< \dfrac{x}{y}< \dfrac{23}{29}\)
<=> \(\left\{{}\begin{matrix}11y< 17x\\29x< 23y\end{matrix}\right.\) (2)
thay (1) vào (2)
=> \(\left\{{}\begin{matrix}11\left(\dfrac{31+9x}{8}\right)< 17x\\29x< 23\left(\dfrac{31+9x}{8}\right)\end{matrix}\right.\)
<=> \(\left\{{}\begin{matrix}\dfrac{341+99x}{8}< 17x\\29x< \dfrac{713+207x}{8}\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}\dfrac{341-37x}{8}< 0\\\dfrac{25x-713}{8}< 0\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}341-37x< 0\\25x-713< 0\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}x>\dfrac{341}{37}\\x< 28,52\end{matrix}\right.\)\(\Leftrightarrow\dfrac{341}{7}< x< 28,52\)
=> x ∈ {10;11;12;13;14;15;16;17;18;19;20;21;22;23;24;25;26;27;28}
mà x,y nguyên dương => (x,y) = (17,23); (25;32)
Em chuyển 9x = 8y - 31 thành 8b - 9b = 31 cho dễ làm ạ
Từ \(8b-9a=31\Rightarrow b=\frac{31+9a}{8}=\frac{32-1+8a+a}{8}\in N\)
\(\Rightarrow a-1⋮8\Rightarrow a=8k+1\left(k\in N\right)\Rightarrow b=\frac{31+72k+9}{8}=9k+5\)
\(\Rightarrow\frac{a}{b}=\frac{8k+1}{9k+5}\)Mà \(\frac{11}{17}< \frac{a}{b}< \frac{2329\Rightarrow11}{17}< \frac{8k+1}{9k+5}< \frac{23}{29} \)
+ Với \(\frac{11}{17}< \frac{8k+1}{9k+5}\Rightarrow11.\left(9k+5\right)< 17.\left(8k+1\right)\Rightarrow99k+55< 136k+17\Rightarrow37k>38\)
\(\Rightarrow k>\frac{38}{37}\Rightarrow k>1\) (1)
Với \(\frac{8k+1}{9k+5}< \frac{23}{29}\Rightarrow29.\left(8k+1\right)< 23.\left(9k+5\right)\Rightarrow232k+29< 207k+115\Rightarrow25k< 86\)
\(\Rightarrow k< \frac{86}{25}\Rightarrow k< 4\) (2)
Từ (1) và (2) suy ra \(1< k< 4\)mà \(k\in N\)nên \(k\in\left\{2;3\right\}\)
Với \(k=2\)thì \(\frac{a}{b}=\frac{17}{25}\)
Với \(k=3\)thì \(\frac{a}{b}=\frac{25}{32}\)
Vậy............
Tìm số tự nhiên a,b thỏa mãn điều kiện:
\(\dfrac{11}{17}< \dfrac{a}{b}< \dfrac{23}{29}\) và 8b-9a=31
Từ \(8b-9a=31\Leftrightarrow8b=9a+31\)
Ta có: \(\dfrac{11}{17}< \dfrac{a}{b}< \dfrac{23}{29}\Rightarrow\left\{{}\begin{matrix}17a>11b\\29a< 23b\end{matrix}\right.\)
\(\Rightarrow\left\{{}\begin{matrix}17.8a>11.8b\\29.8a< 23.8b\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}136a>11\left(9a+31\right)\\232a< 23\left(9a+31\right)\end{matrix}\right.\)
\(\Rightarrow\left\{{}\begin{matrix}136a>99a+341\\232a< 207a+713\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}37a>341\\25a< 713\end{matrix}\right.\)
\(\Rightarrow\dfrac{341}{37}< a< \dfrac{713}{25}\)
Mà a là số tự nhiên \(\Rightarrow9< a< 29\) (1)
Lại có \(8b-9a=31\Leftrightarrow8\left(b-a\right)=a+31\)
\(\Rightarrow a+31\) chia hết cho 8 \(\Rightarrow a\) chia 8 dư 1 (2)
(1);(2) \(\Rightarrow\left[{}\begin{matrix}a=17\\a=25\end{matrix}\right.\)
Với \(a=17\Rightarrow b=23\)
Với \(a=25\Rightarrow b=32\)
tìm các số nguyên a ,b thỏa mãn điều kiện:\(\dfrac{11}{17}< \dfrac{a}{b}< \dfrac{23}{29}và8b-9a=31\)