Bài 1: Tìm giá trị của biến số để mỗi biểu thức sau có giá trị = 0
a) (x+1)(x2-1)
b) |x-2| - 1
c)(5y2 - 20)(x2+2)
d)(x+1)2 + (y-2)2
Thank you
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bài 3:
a) Ta có: \(A=25x^2-20x+7\)
\(=\left(5x\right)^2-2\cdot5x\cdot2+4+3\)
\(=\left(5x-2\right)^2+3>0\forall x\)(đpcm)
d) Ta có: \(D=x^2-2x+2\)
\(=x^2-2x+1+1\)
\(=\left(x-1\right)^2+1>0\forall x\)(đpcm)
Bài 1:
a) Ta có: \(A=x^2-2x+5\)
\(=x^2-2x+1+4\)
\(=\left(x-1\right)^2+4\ge4\forall x\)
Dấu '=' xảy ra khi x=1
b) Ta có: \(B=x^2-x+1\)
\(=x^2-2\cdot x\cdot\dfrac{1}{2}+\dfrac{1}{4}+\dfrac{3}{4}\)
\(=\left(x-\dfrac{1}{2}\right)^2+\dfrac{3}{4}\ge\dfrac{3}{4}\forall x\)
Dấu '=' xảy ra khi \(x=\dfrac{1}{2}\)
a) \(\left(x+1\right)\left(x^2+1\right)=0\)
Vì \(\left(x^2+1\right)>0\forall x\)
\(\Rightarrow x=-1\)
b) \(5y^2-20=0\)
\(y^2-4=0\)
\(\left(y-2\right)\left(y+2\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}y=2\\y=-2\end{matrix}\right.\)
a, Ta có : \(\left(x+1\right)\left(x^2+1>0\right)=0\Leftrightarrow x=-1\)
b, \(5y^2=20\Leftrightarrow y^2=4\Leftrightarrow\left[{}\begin{matrix}y=2\\y=-2\end{matrix}\right.\)
c, \(\left|x-2\right|-1=0\Leftrightarrow\left|x-2\right|=1\Leftrightarrow\left[{}\begin{matrix}x-2=1\\x-2=-1\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=3\\x=1\end{matrix}\right.\)
d, \(\left|y-2\right|+5=0\)( vô lí )
Vậy ko có gtr y để bth bằng 0
Xét biểu thức
A = ( x + 1 ) x 2 + 2 = 0 ⇔ x + 1 = 0 x 2 + 2 = 0 ⇒ x + 1 = 0 do x 2 + 2 ≥ 2 > 0 ⇒ x = − 1
Vậy có 1 giá trị của x thỏa mãn
Chọn đáp án B
a) x ≠ 0 , x ≠ − 2
b) Ta có D = x 2 - 2x - 2.
c) Chú ý D = - x 2 - 2x - 2 = - ( x + 1 ) 2 - 1 ≤ -1. Từ đó tìm được giá trị lớn nhất của D = -1 khi x = -1.
a: =>(x+1)2(x-1)=0
=>x=-1 hoặc x=1
b: =>|x-2|=1
=>x-2=1 hoặc x-2=-1
=>x=3 hoặc x=1
c: =>y2-4=0
=>y=2 hoặc y=-2
d: =>x+1=0 và y-2=0
=>x=-1 và y=2