K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

24 tháng 10 2017

mk ko bt 123

15 tháng 5 2018

khó thế

11 tháng 3 2017

Tự vẽ hình nhé

a) t/g BAM = t/g BM'M (cạnh huyền-góc nhọn)

=> BA = BM' (2 cạnh t/ứ)

Gọi K là giao điểm của BM và AM'

t/g BAK = t/g BM'K (c.g.c)

=> BAK = BM'K (2 góc t/ứ)

=> 90o - BAK = 90o - BM'K

=> BAM - BAK = BM'M - BM'K

=> MAM' = MM'A

=> t/g AMM' cân tại M (dấu hiệu nhận biết t/g cân) 

Chứng minh tương tự với t/g còn lại

b) xem lại đề

11 tháng 3 2017

a.Xét tam giác ACN và N'CN có:

góc CAN = CN'N = 90*

CN là cạnh chung

góc NCA = NCN' (gt)

Suy ra :tam giác ACN = N'CN ( cạnh huyền góc nhọn )

Suy ra: NA = NN' ( hai cạnh tương ứng )

Vậy tam giác ANN' cân tại N 

Tương tự ta có tam giác AMM' cân tại M.

b. A B C M N M' N'

5 tháng 6 2023

Em tự vẽ hình nhé!

Xét tam giác ABC, O là giao điểm của các tia phân giác của góc B và C nên tia AO là tia phân giác của góc A.

Có \(AN\perp AO\) nên AN là tia phân giác ngoài tại đỉnh A của tam giác ABC. Tia phân giác ngoài AN và tia phân giác trong CO của tam giác ABC cắt nhau tại N.

=> tia BN là tia phân giác ngoài tại đỉnh B của tam giác ABC. Do đó \(BM\perp BN\) (2 tia phân giác ngoài của 2 góc kề bù)

Chứng minh tương tự được \(CM\perp CN\)

19 tháng 10 2019