K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

A B M E F Hình minh họa

Chứng minh :
*) Vì △ABC cân tại A \(\Rightarrow\widehat{ABC}=\widehat{ACB}\left(\text{t/c t/g cân}\right)\)
\(\Rightarrow AB=AC\left(\text{t/c t/g cân}\right)\)
Xét △MEB vuông tại E và △MFC vuông tại F có:
BM = MC ( gt )
\(\widehat{ABC}=\widehat{ACB}\left(cmt\right)\)
⇒ △MEB = △MFC( ch - gn )
⇒ EM = FM ( tương ứng )
*)Xét △AEM vuông tại E và △AFM vuông tại F có :
EM = FM ( cmt )
AM - cạnh chung
⇒△AEM = △AFM ( ch - cgv )
⇒ AE = AF ( tương ứng )
*)Xét △AMB và △AMC có:
AB = AC ( cmt )
AM - cạnh chung
MB = MC ( gt )
⇒ △AMB = △AMC ( c.c.c )
\(\Rightarrow\widehat{AMB}=\widehat{AMC}\left(\text{tương ứng}\right)\)
\(\widehat{AMB}+\widehat{AMC}=180^o\left(\text{kề bù}\right)\)
\(\Rightarrow\widehat{AMB}=\widehat{AMC}=90^o\)
⇒ AM ⊥ BC ⇒ AM ⊥ EF
*) Vì \(\left\{{}\begin{matrix}AM\perp EF\\AM\perp BC\end{matrix}\right.\) \(\Rightarrow EF\text{//}BC\) ( tính vuông góc đến song song )

a: Xét ΔBEM vuông tại E và ΔCFM vuông tại F có 

MB=MC

\(\widehat{MBE}=\widehat{MCF}\)

Do đó:ΔBEM=ΔCFM

b: Ta có: AE+EB=AB

AF+FC=AC

mà EB=FC

và AB=AC
nên AE=AF

mà ME=MF

nên AM là đường trung trực của EF

c: Ta có: ΔABC cân tại A

mà AM là đường trung tuyến

nên AM là đường trung trực của BC(1)

Xét ΔABD vuông tại B và ΔACD vuông tại C có
AD chung

AB=AC
Do đó: ΔABD=ΔACD

Suy ra: DB=DC

hay D nằm trên đường trung trực của BC(2)

Từ (1) và (2) suy ra A,M,D thẳng hàng

8 tháng 4 2021

Đăng vào phần lớp 8 ấy, thế này kh ai giải cho đâu.

a) Ta có: \(\widehat{ABF}+\widehat{ABC}=180^0\)(hai góc kề bù)

\(\widehat{ACE}+\widehat{ACB}=180^0\)(hai góc kề bù)

mà \(\widehat{ABC}=\widehat{ACB}\)(hai góc ở đáy của ΔBAC cân tại A)

nên \(\widehat{ABF}=\widehat{ACE}\)

Xét ΔABF và ΔACE có 

AB=AC(ΔABC cân tại A)

\(\widehat{ABF}=\widehat{ACE}\)(cmt)

BF=CE(gt)

Do đó: ΔABF=ΔACE(c-g-c)

Suy ra: AF=AE(Hai cạnh tương ứng)

Xét ΔAFE có AF=AE(Cmt)

nên ΔAFE cân tại A(Định nghĩa tam giác cân)

a: Xet ΔAHB vuôg tại H và ΔCAB vuông tại A có

góc B chung

=>ΔAHB đồng dạng với ΔCAB

b: Xét ΔAHB vuông tại H có HE là đường cao

nen AE*AB=AH^2

Xét ΔAHC vuông tạiH có HF là đường cao

nên AF*AC=AH^2

=>AE*AB=AF*AC

c: góc MEB=góc AEF=góc AHF=góc MCF

Xét ΔMEB và ΔMCF có

góc MEB=góc MCF

góc M chung

=>ΔMEB đồng dạng với ΔMCF

=>ME/MC=MB/MF

=>ME/MB=MC/MF

=>ΔMEC đồng dạng với ΔMBF

=>góc MCE=góc MFB

30 tháng 3 2016

mình k hỉu bài này nên mong các bạn có thể giúp đỡ mình nhé 

30 tháng 3 2016

sao k ai giup mink zay

15 tháng 10 2023

Xét ΔABC vuông tại A có AH là đường cao

nên \(HB\cdot HC=AH^2\)

=>HB*HC=4^2=16

mà HB+HC=10cm

nên HB,HC là hai nghiệm của phương trình:

\(x^2-10x+16=0\)

=>(x-8)(x-2)=0

=>\(\left[{}\begin{matrix}x=8\\x=2\end{matrix}\right.\)

Do đó, chúng ta sẽ có 2 trường hợp là \(\left[{}\begin{matrix}BH=8cm;CH=2cm\\BH=2cm;CH=8cm\end{matrix}\right.\)

15 tháng 10 2023

thank you