K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

8 tháng 4 2021

Đăng vào phần lớp 8 ấy, thế này kh ai giải cho đâu.

a) Ta có: \(\widehat{ABF}+\widehat{ABC}=180^0\)(hai góc kề bù)

\(\widehat{ACE}+\widehat{ACB}=180^0\)(hai góc kề bù)

mà \(\widehat{ABC}=\widehat{ACB}\)(hai góc ở đáy của ΔBAC cân tại A)

nên \(\widehat{ABF}=\widehat{ACE}\)

Xét ΔABF và ΔACE có 

AB=AC(ΔABC cân tại A)

\(\widehat{ABF}=\widehat{ACE}\)(cmt)

BF=CE(gt)

Do đó: ΔABF=ΔACE(c-g-c)

Suy ra: AF=AE(Hai cạnh tương ứng)

Xét ΔAFE có AF=AE(Cmt)

nên ΔAFE cân tại A(Định nghĩa tam giác cân)

NV
11 tháng 4 2021

a. \(\overrightarrow{AB}=\left(4;-2\right)\) ; \(\overrightarrow{BC}=\left(-2;-4\right)\)

\(\Rightarrow\left\{{}\begin{matrix}\overrightarrow{AB}.\overrightarrow{BC}=4.\left(-2\right)+\left(-2\right).\left(-4\right)=0\\AB=\sqrt{4^2+\left(-2\right)^2}=2\sqrt{5}\\BC=\sqrt{\left(-2\right)^2+\left(-4\right)^2}=2\sqrt{5}\end{matrix}\right.\)

\(\Rightarrow\left\{{}\begin{matrix}AB\perp BC\\AB=BC\end{matrix}\right.\) \(\Rightarrow\Delta ABC\) vuông cân tại B

\(S_{ABC}=\dfrac{1}{2}AB.BC=10\)

b.

\(\overrightarrow{AC}=\left(2;-6\right)=2\left(1;-3\right)\)

(h) vuông góc AC nên nhận (1;-3) là 1 vtpt

Phương trình: \(1\left(x-2\right)-3\left(y-4\right)=0\Leftrightarrow x-3y+10=0\)

NV
11 tháng 4 2021

c.

Gọi M là trung điểm BC \(\Rightarrow M\left(5;0\right)\)

Phương trình trung trực BC qua M và vuông góc BC (nên nhận (1;2) là 1 vtpt):

\(1\left(x-5\right)+2y=0\Leftrightarrow x+2y-5=0\)

Tọa độ K là nghiệm: \(\left\{{}\begin{matrix}x+2y-5=0\\x-3y+10=0\end{matrix}\right.\) \(\Rightarrow K\left(-1;3\right)\)

Chứng minh ABHK là hbh, nhưng H là điểm nào vậy bạn?

d.

Gọi \(D\left(0;d\right)\Rightarrow\overrightarrow{CD}=\left(-4;d+2\right)\)

\(\overrightarrow{AC}.\overrightarrow{CD}=0\Leftrightarrow2.\left(-4\right)+\left(-6\right).\left(d+2\right)=0\Rightarrow d=-\dfrac{10}{3}\)

\(\Rightarrow D\left(0;-\dfrac{10}{3}\right)\)

a: Xét ΔDBH vuông tại H và ΔECK vuông tại K có 

DB=EC

\(\widehat{DBH}=\widehat{ECK}\)

Do đó: ΔDBH=ΔECK

Suy ra: HB=CK

b: Xét ΔAHB và ΔAKC có

AB=AC

\(\widehat{ABH}=\widehat{ACK}\)

BH=CK

Do đó: ΔAHB=ΔAKC

c: Xét tứ giác HKED có

HD//KE

HD=KE

Do đó: HKED là hình bình hành

Suy ra: HK//DE

d: Xét hình bình hành HKED có \(\widehat{KHD}=90^0\)

nên HKED là hình chữ nhật

Suy ra: HE=KD

Xét ΔAHE và ΔAKD có 

AH=AK

HE=KD

AE=AD

Do đó: ΔAHE=ΔAKD

a: Vì OA<OB

nên điểmA nằm giữa O và B

mà OA=1/2OB

nên A là trung điểm của OB

b: BI=AB/2=3cm

=>OI=9cm

5 tháng 5 2017

a ,Vì tam giác ABC cân tại A , AB=AC

Xét TG ABH và TG ACH , ta có :

AC=AB ; góc AHB = góc AHC = 90o ( AH vuông BC )

\(\Rightarrow\) TG ABH = TG ACH ( cạnh huyền - góc nhọn )

\(\Rightarrow\) góc BAH = góc CAH

Xét TG ABG và TG ACG , có :

góc BAH = góc CAH ; AG chung ; AB =AC

\(\Rightarrow\)TG ABG = TG ACG ( c.g.c )

\(\Rightarrow\) GB=GC ; góc ABG = góc ACG

C/m Tg BCD = Tg CBM (g.c.g)\(\Rightarrow\) góc BDC = góc CMB

C/m Tg BDG = Tg CMG ( g.c.g)

phần còn lại (bn) tự làm nốt đi


A B C M H D G

5 tháng 5 2017

không cần giúp