cho tam giac ABC vuong tai A, ve AH vuong goc voi BC(H thuoc BC). Cho BA=18, CH=32. Tinh AC
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Hình bạn tự vẽ nhé.
Vì tam giác ABC vuông tại A.
Suy ra AB2+AC2=BC2AB2+AC2=BC2
⇔AB2+AC2=100(1)⇔AB2+AC2=100(1)
Ta có ABAC=34(GT)(2)ABAC=34(GT)(2)
Từ (1) , (2) suy ra ⎧⎩⎨AB2+AC2=100ABAC=34⇒⎧⎩⎨⎪⎪⎪⎪⎪⎪(3AC4)2+AC2=100AB=3AC4⇒{AB=6AC=8{AB2+AC2=100ABAC=34⇒{(3AC4)2+AC2=100AB=3AC4⇒{AB=6AC=8
Ta có : Diện tích tam giác ABC được tính bởi công thức 12AH⋅BC12AH⋅BC
mà vì đây cũng là tam giác vuông, nên còn được tính bởi công thức 12AB⋅AC12AB⋅AC
=> AH⋅BC=AB⋅ACAH⋅BC=AB⋅AC (sau này sẽ học ở lớp 9 hệ thức này)
⇒AH=AB⋅ACBC=6⋅810=4,8(cm)
Hình:
Giải:
Theo hình vẽ và dữ kiện đề bài, ta liệt kê các góc nhọn:
\(\widehat{ABC};\widehat{ACB};\widehat{BHF};\widehat{FHA};\widehat{FAH};\widehat{AHE};\widehat{HAE};\widehat{EHC}\)
=> Có 8 góc nhọn
Ta có:
\(\left\{{}\begin{matrix}\widehat{FHE}=90^0\\\widehat{HEA}=90^0\\\widehat{FAE}=90^0\end{matrix}\right.\left(gt\right)\)
Suy ra tứ giác AFHE là hình chữ nhật
Từ đó, suy ra:
\(\left\{{}\begin{matrix}FH//AE\left(FH//AC\right)\\HE//AF\left(HE//AB\right)\end{matrix}\right.\)
* Xét trường hợp FH // AE ( FH // AC), có:
- \(\widehat{FHA}=\widehat{HAE}\) (Hai góc so le trong)
- \(\widehat{BHF}=\widehat{ACB}\) (Hai góc đồng vị)
* Xét trường hợp HE // AF ( HE // AB), có:
- \(\widehat{AHE}=\widehat{FAH}\) (Hai góc so le trong)
- \(\widehat{EHC}=\widehat{ABC}\) (Hai góc đồng vị)
Ta thấy có đủ 8 góc nhọn và có 4 cặp góc nhọn bằng nhau
Vậy ...
cố ngồi mà nhìn đi