1 . Chứng minh 74n -1 chia hết cho 5 ( Sử dụng đồng dư thức )
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta thấy: 999993 đồng dư với 3(mod 5)
=>9999932 đồng dư với 32(mod 5)
=>9999932 đồng dư với 9(mod 5)
=>9999932 đồng dư với 4(mod 5)
=>9999932 đồng dư với -1(mod 5)
=>(9999932)999 đồng dư với (-1)999(mod 5)
=>9999931998 đồng dư với -1(mod 5)
=>9999931998 đồng dư với 4(mod 5)
=>9999931998.999993 đồng dư với 4.3(mod 5)
=>9999931999 đồng dư với 12(mod 5)
=>9999931999 đồng dư với 2(mod 5)
Lại có: 555557 đồng dư với 2(mod 5)
=>5555572 đồng dư với 22(mod 5)
=>5555572 đồng dư với 4(mod 5)
=>5555572 đồng dư với -1(mod 5)
=>(5555572)998 đồng dư với (-1)998(mod 5)
=>5555571996 đồng dư với 1(mod 5)
=>5555571996.555553 đồng dư với 1.2(mod 5)
=>5555571997 đồng dư với 2(mod 5)
=>9999931999-5555571997đồng dư với 2-2(mod 5)
=>9999931999-5555571997đồng dư với 0(mod 5)
=>9999931999-5555571997 chia hết cho 5
Ta có: 3012 = 13.231 + 9
Do đó: 3012 đồng dư với 9 ( mod 13)
\(=>3012^3\) đồng dư với \(9^3\left(mod13\right)\). Mà \(9^3=729\) đồng dư với 1 ( mod 13)
=> \(3012^3\) đồng dư với 1 ( mod 13)
\(=>\left(3012^3\right)^{31}\) đồng dư với 1 ( mod 13)
\(hay3012^{93}\) đồng dư với 1 ( mod 13)
=> \(3012^{93}-1\) đồng dư với 0 ( mod 13)
hay \(3012^{93}\) chia hết cho 13 ( đpcm)