Cho x>0, y>0 và \(x+y\ge6\)
Tìm GTNN của biểu thức:
\(P=3x+2y+\dfrac{6}{y}+\dfrac{8}{y}\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Cho x > 0 , y > 0 và \(x+y\ge6\). Tìm GTNN của biểu thức P = 3x + 2y + \(\frac{6}{x}+\frac{8}{y}\)
Ta có : P = \(3x+2y+\frac{6}{x}+\frac{8}{y}\)
\(\Rightarrow P=\left[\frac{6}{x}+\frac{3}{2}x\right]+\left[\frac{8}{y}+\frac{1}{2}y\right]+(\frac{3}{2})(x+y)\)
\(\Rightarrow6+4+\frac{3}{2}\cdot6\)
\(\Rightarrow A\ge19\)
Vậy Amin = 19 => x = 2 với y = 4
Câu trả lời trước bị sai nên làm lại.
Ta có:Q=\(\dfrac{2y+3x}{xy}+\dfrac{6}{3x+2y}=\dfrac{3x+2y}{6}+\dfrac{6}{3x+2y}\)vì xy=6
Đặt t=3x+2y => t\(\ge2\sqrt{2.y.3.x}\)=12
Theo bđt cô si và t \(\ge\)12 ta được :
Q=\(\left(\dfrac{t}{6}+\dfrac{24}{t}\right)-\dfrac{18}{t}\ge2\sqrt{\dfrac{t}{6}.\dfrac{24}{t}}-\dfrac{18}{t}=\dfrac{5}{2}\)
Đẳng thức xảy ra <=> x=2 và y=3
\(Q=\dfrac{2}{x}+\dfrac{3}{y}+\dfrac{6}{3x+2y}\\ Q=\dfrac{2y+3x}{xy}+\dfrac{6}{3x+2y}\)
Áp dụng bất đẳng thức Cô si cho hai số không âm và thay xy=6 vào ta được
\(Q\ge2\sqrt{\dfrac{2y+3x}{6}\times\dfrac{6}{2y+3x}}\\ Q\ge2\)
Đẳng thức xảy ra <=> \(\left(3x+2y\right)^2\) =36 và xy=6
<=> x=2,y=3
Câu hỏi của KHANH QUYNH MAI PHAM - Toán lớp 8 - Học toán với OnlineMath
Em tham khảo!
\(P=3x+2y+\frac{6}{x}+\frac{8}{y}\)
\(2P=6x+4y+\frac{12}{x}+\frac{16}{y}\)
\(=\left(3x+\frac{12}{x}\right)+\left(y+\frac{16}{y}\right)+3\left(x+y\right)\)
\(\ge2\sqrt{3x\cdot\frac{12}{x}}+2\sqrt{y\cdot\frac{16}{y}}+3\cdot6=12+8+18=38\)( bđt AM-GM và giả thiết x + y ≥ 6 )
=> P ≥ 19
Đẳng thức xảy ra <=> \(\hept{\begin{cases}3x=\frac{12}{x}\\y=\frac{16}{y}\\x+y=6\end{cases}}\Rightarrow\hept{\begin{cases}x=2\\y=4\end{cases}}\)
Vậy MinP = 19
Ta có: \(P=3x+2y+\frac{6}{x}+\frac{8}{y}=\left(\frac{3}{2}x+\frac{3}{2}y\right)+\left(\frac{3}{2}x+\frac{6}{x}\right)+\left(\frac{y}{2}+\frac{8}{y}\right)\)
Vì \(\frac{3}{2}x+\frac{3}{2}y=\frac{3}{2}\left(x+y\right)\ge\frac{3}{2}.6=9\)
\(\frac{3x}{2}+\frac{6}{x}\ge2\sqrt{\frac{3x}{2}.\frac{6}{x}}=6;\frac{y}{2}+\frac{8}{y}\ge2\sqrt{\frac{y}{2}.\frac{8}{y}}=4\)
\(\Rightarrow P\ge9+6+4=19\)
Dấu '=' xảy ra <=> \(\hept{\begin{cases}x+y=6\\\frac{3x}{2}=\frac{6}{x}\\\frac{y}{2}=\frac{8}{y}\end{cases}}\Leftrightarrow\hept{\begin{cases}x=2\\y=4\end{cases}}\)
Vậy GTNN của P là 19
\(2A=6x+4y+\frac{12}{x}+\frac{16}{y}=3x+\frac{12}{x}+y+\frac{16}{y}+3x+3y\)
Áp dụng bất đẳng thức cô si cho 2 số dương, ta có:
\(3x+\frac{12}{x}\ge2.\sqrt{36}=12\)
\(y+\frac{16}{y}\ge2\sqrt{16}=8\)
Lại có\(x+y\ge6\Rightarrow3x+3y\ge18\)
Vậy \(2A\ge12+8+18\Leftrightarrow2A\ge38\Leftrightarrow A\ge19\) \(a=19\Leftrightarrow x=2;y=4\)
\(B=3x+2y+\frac{6}{x}+\frac{8}{y}\)
\(=\frac{3x}{2}+\frac{6}{x}+\frac{3x}{2}+\frac{y}{2}+\frac{8}{y}+\frac{3y}{2}\)
Áp dụng Cauchy ta được :
\(\frac{3x}{2}+\frac{6}{x}\ge2\sqrt{\frac{3x}{2}.\frac{6}{x}}=6\)
\(\frac{y}{2}+\frac{8}{y}\ge2\sqrt{\frac{8y}{2y}}=4\)
\(\Rightarrow B\ge6+4+\frac{3\left(x+y\right)}{2}\ge6+4+9=19\)
Dấu "=" xảy ra khi \(\hept{\begin{cases}x+y=6\\\frac{y}{2}=\frac{8}{y}\\\frac{3x}{2}=\frac{6}{x}\end{cases}\Leftrightarrow x=2;y=4}\)
Lời giải:
Thực hiện tách P:
\(P=5x+3y+\frac{12}{x}+\frac{16}{y}\)
\(P=2(x+y)+\left(3x+\frac{12}{x}\right)+\left(y+\frac{16}{y}\right)\)
Theo đề bài: \(x+y\geq 6\Rightarrow 2(x+y)\geq 12\)
Áp dụng BĐT AM-GM ta có:
\(3x+\frac{12}{x}\geq 2\sqrt{3x.\frac{12}{x}}=12\)
\(y+\frac{16}{y}\geq 2\sqrt{y.\frac{16}{y}}=8\)
Do đó: \(P\geq 12+12+8=32\)
Vậy GTNN của \(P=32\Leftrightarrow (x,y)=(2,4)\)
Áp dụng BĐT AM-GM:
\(P=3x+2y+\dfrac{6}{x}+\dfrac{8}{y}\)
\(=3x+\dfrac{12}{x}+2y+\dfrac{32}{y}-6\left(\dfrac{1}{x}+\dfrac{4}{y}\right)\)
\(=2\sqrt{3x\cdot\dfrac{12}{x}}+2\sqrt{2y\cdot\dfrac{32}{y}}-6\cdot\dfrac{\left(1+2\right)^2}{x+y}\)
\(=28-6\cdot\dfrac{\left(1+2\right)^2}{6}=19\)
\("=" \Leftrightarrow x=2;y=4\)
Có sai đề k nhỉ ??