Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(2A=6x+4y+\frac{12}{x}+\frac{16}{y}=3x+\frac{12}{x}+y+\frac{16}{y}+3x+3y\)
Áp dụng bất đẳng thức cô si cho 2 số dương, ta có:
\(3x+\frac{12}{x}\ge2.\sqrt{36}=12\)
\(y+\frac{16}{y}\ge2\sqrt{16}=8\)
Lại có\(x+y\ge6\Rightarrow3x+3y\ge18\)
Vậy \(2A\ge12+8+18\Leftrightarrow2A\ge38\Leftrightarrow A\ge19\) \(a=19\Leftrightarrow x=2;y=4\)
Ta có:\(\frac{3}{2}x+\frac{6}{x}\ge2\sqrt{\frac{3}{2}x.\frac{6}{x}}=6\)
\(\frac{y}{2}+\frac{8}{y}\ge2\sqrt{\frac{y}{2}.\frac{8}{y}}=4\)
\(\frac{3}{2}\left(x+y\right)\ge\frac{3}{2}.6=9\)
Cộng vế theo vế \(\Rightarrow A\ge19\)
"="<=>x=2;y=4
Áp dụng BĐT AM-GM:
\(P=3x+2y+\dfrac{6}{x}+\dfrac{8}{y}\)
\(=3x+\dfrac{12}{x}+2y+\dfrac{32}{y}-6\left(\dfrac{1}{x}+\dfrac{4}{y}\right)\)
\(=2\sqrt{3x\cdot\dfrac{12}{x}}+2\sqrt{2y\cdot\dfrac{32}{y}}-6\cdot\dfrac{\left(1+2\right)^2}{x+y}\)
\(=28-6\cdot\dfrac{\left(1+2\right)^2}{6}=19\)
\("=" \Leftrightarrow x=2;y=4\)
2.
\(P=3x+2y+\frac{6}{x}+\frac{8}{y}\)
\(P=\frac{3x}{2}+\frac{6}{x}+\frac{y}{2}+\frac{8}{y}+\frac{3x}{2}+\frac{3y}{2}\)
\(P=\left(\frac{3x}{2}+\frac{6}{x}\right)+\left(\frac{y}{2}+\frac{8}{y}\right)+\frac{3}{2}\left(x+y\right)\)
\(P\ge2\sqrt{\frac{18x}{2x}}+2\sqrt{\frac{8y}{2y}}+\frac{3}{2}.6=19\)
\(P_{min}=19\) khi \(\left\{{}\begin{matrix}x=2\\y=4\end{matrix}\right.\)
1.
Do \(0\le a;b;c\le1\Rightarrow\left(1-a\right)\left(1-b\right)\left(1-c\right)\ge0\)
\(\Leftrightarrow1-abc-a-b-c+ab+bc+ca\ge0\)
\(\Leftrightarrow a+b+c-ab-bc-ca\le1-abc\le1\)
Mặt khác \(0\le a;b;c\le1\Rightarrow\left\{{}\begin{matrix}b^2\le b\\c^3\le c\end{matrix}\right.\)
\(\Rightarrow a+b^2+c^3-ab-bc-ca\le a+b+c-ab-bc-ca\le1\) (đpcm)
Dấu "=" xảy ra khi \(\left(a;b;c\right)=\left(0;0;1\right)\) và hoán vị
Câu hỏi của KHANH QUYNH MAI PHAM - Toán lớp 8 - Học toán với OnlineMath
Em tham khảo!
Câu trên mình thấy sai sai vì nếu x càng lớn thì A càng nhỏ , bạn xem lại đề nhé
Câu 2
\(\frac{3}{2}x+\frac{6}{x}\ge6\); \(\frac{1}{2}y+\frac{8}{y}\ge4\)
\(\frac{3}{2}\left(x+y\right)\ge\frac{3}{2}.6=9\)
Cộng các bĐT trên
=> \(3x+2y+\frac{6}{x}+\frac{8}{y}\ge9+6+4=19\)
MinP=19 khi x=2;y=4
Phải là x + y =6 nhé bn, x + y = 4 ko xảy ra dấu =
\(\Rightarrow2A=6x+4y+\frac{12}{x}+\frac{16}{y}\)
\(=3\left(x+y\right)+\left(3x+\frac{12}{x}\right)+\left(y+\frac{16}{y}\right)\)
AD BDT Cô-si cho 2 số không âm
\(\Rightarrow3x+\frac{12}{x}\ge2\sqrt{36}=12;y+\frac{16}{y}\ge2\sqrt{16}=8\)
\(\Rightarrow2A\ge3.6+12+8=38\)
\(\Rightarrow A\ge19\)
Dấu "=" xảy ra \(\Leftrightarrow\left\{{}\begin{matrix}x=2\\y=4\end{matrix}\right.\)
Vậy \(A_{min}=19\Leftrightarrow\left\{{}\begin{matrix}x=2\\y=4\end{matrix}\right.\)
Cho x > 0 , y > 0 và \(x+y\ge6\). Tìm GTNN của biểu thức P = 3x + 2y + \(\frac{6}{x}+\frac{8}{y}\)
Ta có : P = \(3x+2y+\frac{6}{x}+\frac{8}{y}\)
\(\Rightarrow P=\left[\frac{6}{x}+\frac{3}{2}x\right]+\left[\frac{8}{y}+\frac{1}{2}y\right]+(\frac{3}{2})(x+y)\)
\(\Rightarrow6+4+\frac{3}{2}\cdot6\)
\(\Rightarrow A\ge19\)
Vậy Amin = 19 => x = 2 với y = 4
\(B=3x+2y+\frac{6}{x}+\frac{8}{y}\)
\(=\frac{3x}{2}+\frac{6}{x}+\frac{3x}{2}+\frac{y}{2}+\frac{8}{y}+\frac{3y}{2}\)
Áp dụng Cauchy ta được :
\(\frac{3x}{2}+\frac{6}{x}\ge2\sqrt{\frac{3x}{2}.\frac{6}{x}}=6\)
\(\frac{y}{2}+\frac{8}{y}\ge2\sqrt{\frac{8y}{2y}}=4\)
\(\Rightarrow B\ge6+4+\frac{3\left(x+y\right)}{2}\ge6+4+9=19\)
Dấu "=" xảy ra khi \(\hept{\begin{cases}x+y=6\\\frac{y}{2}=\frac{8}{y}\\\frac{3x}{2}=\frac{6}{x}\end{cases}\Leftrightarrow x=2;y=4}\)