Giải phương trình sau:
2 (x - 2.5) = 0.25 + \(\dfrac{4x-3}{8}\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
c) \(\dfrac{x-1}{5}+x=\dfrac{x+1}{7}\)
\(\Leftrightarrow\dfrac{7x-7}{35}+\dfrac{35x}{35}=\dfrac{5x+5}{35}\)
\(\Rightarrow7x-7+35x=5x+5\)
\(\Leftrightarrow7x+35x-5x=5+7\)
\(\Leftrightarrow37x=12\)
\(\Leftrightarrow x=\dfrac{12}{37}\)
Vậy pt có nghiệm duy nhất \(x=\dfrac{12}{37}\)
d) \(2\left(x-2,5\right)=0,25+\dfrac{4x-3}{8}\)
\(\Leftrightarrow\dfrac{16\left(x-2,5\right)}{8}=\dfrac{2}{8}+\dfrac{4x-3}{8}\)
\(\Rightarrow16x-40=2+4x-3\)
\(\Leftrightarrow16x-4x=2-3+40\)
\(\Leftrightarrow12x=39\)
\(\Leftrightarrow x=3,25\)
Vậy pt có nghiệm duy nhất \(x=3,25\)
Bài 4 :
24 phút = \(\dfrac{24}{60} = \dfrac{2}{5}\) giờ
Gọi thời gian dự định đi từ A đến B là x(giờ) ; x > 0
Suy ra quãng đường AB là 36x(km)
Khi vận tốc sau khi giảm là 36 -6 = 30(km/h)
Vì giảm vận tốc nên thời gian đi hết AB là x + \(\dfrac{2}{5}\)(giờ)
Ta có phương trình:
\(36x = 30(x + \dfrac{2}{5})\\ \Leftrightarrow x = 2\)
Vậy quãng đường AB dài 36.2 = 72(km)
b) Ta có: \(3+\left(x-5\right)=2\left(3x-2\right)\)
\(\Leftrightarrow3+x-5=6x-4\)
\(\Leftrightarrow x-2-6x+4=0\)
\(\Leftrightarrow-5x+2=0\)
\(\Leftrightarrow-5x=-2\)
\(\Leftrightarrow x=\dfrac{2}{5}\)
Vậy: \(S=\left\{\dfrac{2}{5}\right\}\)
c) Ta có: \(2\left(x-0.5\right)+3=0.25\left(4x-1\right)\)
\(\Leftrightarrow2x-1+3=x-\dfrac{1}{4}\)
\(\Leftrightarrow2x+2-x+\dfrac{1}{4}=0\)
\(\Leftrightarrow x+\dfrac{9}{4}=0\)
\(\Leftrightarrow x=-\dfrac{9}{4}\)
Vậy: \(S=\left\{-\dfrac{9}{4}\right\}\)
d) Ta có: \(2\left(x-\dfrac{1}{4}\right)-4=-6\left(-\dfrac{1}{3}x+0.5\right)+2\)
\(\Leftrightarrow2x-\dfrac{1}{2}-4=2x-3+2\)
\(\Leftrightarrow2x-\dfrac{9}{2}=2x-1\)
\(\Leftrightarrow2x-2x=-1+\dfrac{9}{2}\)
\(\Leftrightarrow0x=\dfrac{7}{2}\)(vô lý)
Vậy: \(S=\varnothing\)
a, đk : x khác 5;-6
\(x^2+12x+36+x^2-10x+25=2x^2+23x+61\)
\(\Leftrightarrow2x+61=23x+61\Leftrightarrow21x=0\Leftrightarrow x=0\)(tm)
b, đk : x khác 1;3
\(x^2+2x-15=x^2-1-8\Leftrightarrow2x-15=-9\Leftrightarrow x=3\left(ktmđk\right)\)
pt vô nghiệm
a, đk : x khác 5;-6
x2+12x+36+x2−10x+25=2x2+23x+61x2+12x+36+x2−10x+25=2x2+23x+61
⇔2x+61=23x+61⇔21x=0⇔x=0⇔2x+61=23x+61⇔21x=0⇔x=0(tm)
b, đk : x khác 1;3
x2+2x−15=x2−1−8⇔2x−15=−9⇔x=3(ktmđk)x2+2x−15=x2−1−8⇔2x−15=−9⇔x=3(ktmđk)
pt vô nghiệm
a)\(x^3+x^2+x=-\dfrac{1}{3}\)
\(\Leftrightarrow3x^3+3x^2+3x=-1\)
\(\Leftrightarrow\left(x+1\right)^3=-2x^3\)
\(\Leftrightarrow x+1=\sqrt[3]{-2}x\)
\(\Leftrightarrow x=-\dfrac{1}{1+\sqrt[3]{2}}\)
b) \(x^3+2x^2-4x=-\dfrac{8}{3}\)
\(\Leftrightarrow3x^3+6x^2-12x+8=0\)
\(\Leftrightarrow4x^3-\left(x^3-6x^2+12x-8\right)=0\)
\(\Leftrightarrow4x^3=\left(x-2\right)^3\)
\(\Leftrightarrow\sqrt[3]{4}x=x-2\)
\(\Leftrightarrow x=\dfrac{2}{1-\sqrt[3]{4}}\)
Thêm cái icon tặng cho người xong trước, chứ toi đang ức chế vc
Icon này này,mấy người đánh máy nhanh quá làm toi phải bỏ đi mấy bài :), mà mấy bài dài vc chứ ngắn gì đâu
b: Ta có: \(\sqrt{x^2-6x+9}-\dfrac{\sqrt{6}+\sqrt{3}}{\sqrt{2}+1}=0\)
\(\Leftrightarrow x^2-6x+9=3\)
\(\Leftrightarrow x^2-6x+6=0\)
\(\text{Δ}=\left(-6\right)^2-4\cdot1\cdot6=36-24=12\)
Vì Δ>0 nên phương trình có hai nghiệm phân biệt là:
\(\left\{{}\begin{matrix}x_1=\dfrac{6-2\sqrt{3}}{2}=3-\sqrt{3}\\x_2=3+\sqrt{3}\end{matrix}\right.\)
\(\Leftrightarrow x\left(4x-3\right)-\left(x-2\right)\left(3x+2\right)=x^2-5\)
\(\Leftrightarrow4x^2-3x-3x^2-2x+6x+4=x^2-5\)
\(\Leftrightarrow x^2+x+4=x^2-5\)
=>x+4=-5
hay x=-9(nhận)