HELP ME
A=\(\dfrac{1}{2}C^1_{2n}+\dfrac{1}{4}C^3_{2n}+......+\dfrac{1}{2n}c^{2n-1}_{2n}\)
dùng bằng cách tích phân nha
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
s bi loi nhi?
tim n?
3C\(^0\)\(_{2n}\) \(-\) \(\dfrac{1}{2}\)C\(^1\)\(_{2n}\) \(-\) \(\dfrac{1}{4}\)C\(^3\)\(_{2n}\) +...+ \(\dfrac{3}{2n+1}\)C\(^{2n}\)\(_{2n}\) \(=\) \(\dfrac{10923}{5}\)
Lời giải:
Ta có:
\(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}=\frac{1}{a+b+c}\)
\(\Leftrightarrow \frac{a+b}{ab}=\frac{1}{a+b+c}-\frac{1}{c}=\frac{-(a+b)}{c(a+b+c)}\)
\(\Leftrightarrow (a+b)\left(\frac{1}{ab}+\frac{1}{c(a+b+c)}\right)=0\)
\(\Leftrightarrow (a+b).\frac{ab+c(a+b+c)}{abc(a+b+c)}=0\)
\(\Leftrightarrow (a+b).\frac{(c+a)(c+b)}{abc(a+b+c)}=0\)
\(\Leftrightarrow (a+b)(b+c)(c+a)=0\)
Ta sẽ cm \(\frac{1}{a^{2n+1}}+\frac{1}{b^{2n+1}}+\frac{1}{c^{2n+1}}=\frac{1}{a^{2n+1}+b^{2n+1}+c^{2n+1}}(*)\)
Thật vậy: \((*)\Leftrightarrow \frac{a^{2n+1}+b^{2n+1}}{(ab)^{2n+1}}=\frac{1}{a^{2n+1}+b^{2n+1}+c^{2n+1}}-\frac{1}{c^{2n+1}}\)
\(\Leftrightarrow \frac{a^{2n+1}+b^{2n+1}}{(ab)^{2n+1}}=\frac{-(a^{2n+1}+b^{2n+1})}{c^{2n+1}(a^{2n+1}+b^{2n+1}+c^{2n+1})}\)
\(\Leftrightarrow (a^{2n+1}+b^{2n+1})\left(\frac{1}{(ab)^{2n+1)}}+\frac{1}{c^{2n+1}(a^{2n+1}+b^{2n+1}+c^{2n+1})}\right)=0\)
\(\Leftrightarrow (a^{2n+1}+b^{2n+1}).\frac{c^{2n+1}(a^{2n+1}+b^{2n+1}+c^{2n+1})+(ab)^{2n+1}}{(abc)^{2n+1}(a^{2n+1}+b^{2n+1}+c^{2n+1})}=0\)
\(\Leftrightarrow \frac{(a^{2n+1}+b^{2n+1})(c^{2n+1}+b^{2n+1})(c^{2n+1}+a^{2n+1})}{abc^{2n+1}(a^{2n+1}+b^{2n+1}+c^{2n+1})}=0\)
Thấy rằng
\((a^{2n+1}+b^{2n+1})(b^{2n+1}+c^{2n+1})(c^{2n+1}+a^{2n+1})=(a+b).X.(b+c).Y.(c+a).Z\)
\(=0\) (do \((a+b)(b+c)(c+a)=0\) )
Do đó đẳng thức $(*)$ cần chứng minh đúng.
-------------------
Ta tiếp tục chứng minh \(\frac{1}{a^{2n+1}+b^{2n+1}+c^{2n+1}}=\frac{1}{(a+b+c)^{2n+1}}(**)\)
\(\Leftrightarrow a^{2n+1}+b^{2n+1}+c^{2n+1}=(a+b+c)^{2n+1}\)
Thật vậy:
\((a+b)(b+c)(c+a)=0\)\(\Rightarrow \left[\begin{matrix} a+b=0\\ b+c=0\\ c+a=0\end{matrix}\right.\)
Không mất tổng quát giả sử \(a+b=0\)
\(\Rightarrow \left\{\begin{matrix} a^{2n+1}+b^{2n+1}+c^{2n+1}=(-b)^{2n+1}+b^{2n+1}+c^{2n+1}=c^{2n+1}\\ (a+b+c)^{2n+1}=(0+c)^{2n+1}=c^{2n+1}\end{matrix}\right.\)
\(\Rightarrow a^{2n+1}+b^{2n+1}+c^{2n+1}=(a+b+c)^{2n+1}\)
Do đó $(**)$ đúng
Từ $(*)$ và $(**)$ ta có đpcm.
Ta có:
\(\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c}=\dfrac{1}{a+b+c}\)
\(\Leftrightarrow\left(a+b\right)\left(b+c\right)\left(c+a\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}a=-b\\b=-c\\c=-a\end{matrix}\right.\)
Xét \(a=-b\) thì ta có
\(\left\{{}\begin{matrix}\dfrac{1}{a^{2n+1}}+\dfrac{1}{b^{2n+1}}+\dfrac{1}{c^{2n+1}}=\dfrac{1}{c^{2n+1}}\\\dfrac{1}{a^{2n+1}+b^{2n+1}+c^{2n+1}}=\dfrac{1}{c^{2n+1}}\\\dfrac{1}{\left(a+b+c\right)^{2n+1}}=\dfrac{1}{c^{2n+1}}\end{matrix}\right.\)
\(\Rightarrow\dfrac{1}{a^{2n+1}}+\dfrac{1}{b^{2n+1}}+\dfrac{1}{c^{2n+1}}=\dfrac{1}{a^{2n+1}+b^{2n+1}+c^{2n+1}}=\dfrac{1}{\left(a+b+c\right)^{2n+1}}\)
Tương tự cho 2 bộ số còn lại ta được ĐPCM.
Xét khai triển:
\(\left(x-1\right)^{2n}=C_{2n}^0-C_{2n}^1x+C_{2n}^2x^2-C_{2n}^3x^3+...-C_{2n}^{2n-1}x^{2n-1}+C_{2n}^{2n}x^{2n}\)
Thay \(x=1\) ta được:
\(0=C_{2n}^0-C_{2n}^1+C_{2n}^2-C_{2n}^3+..-C_{2n}^{2n-1}+C_{2n}^{2n}\)
\(\Leftrightarrow C_{2n}^0+C_{2n}^2+...+C_{2n}^{2n}=C_{2n}^1+C_{2n}^3+...+C_{2n}^{2n-1}\)
\(a,lim\dfrac{2n^2+1}{3n^3-3n+3}\)
\(=lim\dfrac{\dfrac{2}{n}+\dfrac{1}{n^3}}{3-\dfrac{3}{n^2}+\dfrac{3}{n^3}}=0\)
\(\lim\dfrac{-3n^3+1}{2n+5}=\lim\dfrac{-3n^2+\dfrac{1}{n}}{2+\dfrac{5}{n}}=\dfrac{-\infty}{2}=-\infty\)
\(\lim\dfrac{n^3-2n+1}{-3n-4}=\lim\dfrac{n^2-2+\dfrac{1}{n}}{-3-\dfrac{4}{n}}=\dfrac{+\infty}{-3}=-\infty\)
a: Gọi d=UCLN(2n+1;5n+2)
\(\Leftrightarrow10n+5-10n-4⋮d\)
\(\Leftrightarrow1⋮d\)
=>d=1
=>UCLN(2n+1;5n+2)=1
hay 2n+1/5n+2 là phân số tối giản
b: Gọi d=UCLN(12n+1;30n+2)
\(\Leftrightarrow5\left(12n+1\right)-2\left(30n+2\right)⋮d\)
\(\Leftrightarrow60n+5-60n-4⋮d\)
\(\Leftrightarrow1⋮d\)
=>d=1
=>UCLN(12n+1;30n+2)=1
=>12n+1/30n+2là phân số tối giản
c: Gọi \(d=UCLN\left(2n+1;2n^2-1\right)\)
\(\Leftrightarrow n\left(2n+1\right)-2n^2+1⋮d\)
\(\Leftrightarrow n+1⋮d\)
\(\Leftrightarrow2n+2⋮d\)
\(\Leftrightarrow2n+2-2n-1⋮d\)
\(\Leftrightarrow1⋮d\)
=>d=1
=>\(\dfrac{2n+1}{2n^2-1}\) là phân số tối giản
Lời giải:
Theo nhị thức New-ton:
\((x+1)^{2n}=C^{0}_{2n}+C^{1}_{2n}x+C^2_{2n}x^2+...+C^{2n}_{2n}x^{2n}\)
\((x-1)^n=C^0_{2n}-C^1_{2n}x+C^2_{2n}x^2-.....-C^{2n-1}_{2n}x^{2n-1}+C^{2n}_{2n}x^{2n}\)
Trừ theo vế ta có:
\(\frac{(x+1)^{2n}-(x-1)^{2n}}{2}=C^1_{2n}x+C^3_{2n}x^3+...+C^{2n-1}_{2n}x^{2n-1}\)
\(\Rightarrow \int ^{1}_{0}\frac{(x+1)^{2n}-(x-1)^{2n}}{2}dx=\int ^{1}_{0}(C^1_{2n}x+C^3_{2n}x^3+...+C^{2n-1}_{2n}x^{2n-1})dx\)
Xét vế trái:
\(\text{VT}=\frac{1}{2}\int ^{1}_{0}(x+1)^{2n}d(x+1)-\frac{1}{2}\int ^{1}_{0}(x-1)^{2n}d(x-1)\)
\(=\left.\begin{matrix} 1\\ 0\end{matrix}\right|\frac{1}{2}\left ( \frac{(x+1)^{2n+1}-(x-1)^{2n+1}}{2n+1} \right )=\frac{2^{2n}-1}{2n+1}\)
Xét vế phải:
\(\text{VP}=\left.\begin{matrix} 1\\ 0\end{matrix}\right|\left ( \frac{C^{1}_{2n}x^2}{2}+\frac{C^{3}_{2n}x^4}{4}+....+\frac{C^{2n-1}_{2n}x^{2n}}{2n} \right )=\frac{1}{2}C^{1}_{2n}+\frac{1}{4}C^3_{2n}+...+\frac{1}{2n}C^{2n-1}_{2n}\)
Vậy \(A=\frac{2^{2n}-1}{2n+1}\)