Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Câu 2 đề thiếu rồi kìa. Cái cuối cùng là tổ hợp chập bao nhiêu của 2n + 1 thế???
1/ Vì M thuộc \(d_3\) nên ta có tọa độ của M là: \(M\left(2a;a\right)\)
Khoản cách từ M đến \(d_1\) là:
\(d\left(M,d_1\right)=\dfrac{\left|2a+a+3\right|}{\sqrt{1^2+1^2}}=\dfrac{\left|3a+3\right|}{\sqrt{2}}\)
Khoản cách từ M đến \(d_2\) là:
\(d\left(M,d_2\right)=\dfrac{\left|2a-a-4\right|}{\sqrt{1^2+1^2}}=\dfrac{\left|a-4\right|}{\sqrt{2}}\)
Theo đề bài ta có:
\(\dfrac{\left|3a+3\right|}{\sqrt{2}}=2.\dfrac{\left|a-4\right|}{\sqrt{2}}\)
\(\Leftrightarrow\left|3a+3\right|=2.\left|a-4\right|\)
\(\Leftrightarrow a^2+10a-11=0\)
\(\Leftrightarrow\left[{}\begin{matrix}a=1\\a=-11\end{matrix}\right.\)
\(\Rightarrow\left[{}\begin{matrix}M\left(2;1\right)\\M\left(-22;-11\right)\end{matrix}\right.\)
a: Vì UCLN(8;3)=1 nên 8/3 là phân số tối giản
b: Vì UCLN(-15;7)=1 nên -15/7 là phân số tối giản
c: Gọi d=UCLN(n+3;2n+5)
\(\Leftrightarrow2n+6-2n-5⋮d\)
=>d=1
=>n+3/2n+5 là phân số tối giản
a) Giả sử các đỉnh đa giác là các điểm biểu diễn hình học các căn bậc n của đơn vị \(P_o=1\). Xét đa thức :
\(f=z^n-1=\left(z-1\right)\left(z-\omega\right)........\left(z-\omega^{n-1}\right),\omega=\cos\frac{2\pi}{n}+i\sin\frac{2\pi}{n}\)
Rõ ràng :
\(n=f'\left(1\right)=\left(1-\omega\right)\left(1-\omega^2\right)...\left(1-\omega^{n-1}\right)\)
Lấy Modun 2 vế ta được kết quả
b) Ta có :
\(1-\omega^k=1-\cos\frac{2k\pi}{n}-i\sin\frac{2k\pi}{n}=2\sin^2\frac{k\pi}{n}-2i\sin\frac{k\pi}{n}\cos\frac{k\pi}{n}\)
\(=2\sin\frac{k\pi}{n}\left(\sin\frac{k\pi}{n}-i\cos\frac{k\pi}{n}\right)\)
Do đó : \(\left|1-\omega^k\right|=2\sin\frac{k\pi}{n},k=1,2,....,n-1\)
Sử dụng a) ta có điều phải chứng minh
c) Xét đa giác đều \(Q_oQ_1.....Q_{2n-1}\) nội tiếp trong đường tròn, các đỉnh của nó là điểm biểu diễn hình học của \(\sqrt{n}\) của đơn vị.
Theo a) \(Q_oQ_1.Q_oQ_2....Q_oQ_{2n-1}=2n\)
Bây giờ xét đa giác đều \(Q_oQ_2....Q_{2n-1}\) ta có \(Q_oQ_2.Q_oQ_4..Q_oQ_{2n-2}=n\)
Do đó \(Q_oQ_1.Q_oQ_3..Q_oQ_{2n-1}=2\) Tính toán tương tự phần b) ta được
\(Q_oQ_{2k-1}=2\sin\frac{\left(2k-1\right)\pi}{2n},k=1,2....n\) và ta có điều phải chứng minh
a)
Ta có \(A=\int ^{\frac{\pi}{4}}_{0}\cos 2x\cos^2xdx=\frac{1}{4}\int ^{\frac{\pi}{4}}_{0}\cos 2x(\cos 2x+1)d(2x)\)
\(\Leftrightarrow A=\frac{1}{4}\int ^{\frac{\pi}{2}}_{0}\cos x(\cos x+1)dx=\frac{1}{4}\int ^{\frac{\pi}{2}}_{0}\cos xdx+\frac{1}{8}\int ^{\frac{\pi}{2}}_{0}(\cos 2x+1)dx\)
\(\Leftrightarrow A=\frac{1}{4}\left.\begin{matrix} \frac{\pi}{2}\\ 0\end{matrix}\right|\sin x+\frac{1}{16}\left.\begin{matrix} \frac{\pi}{2}\\ 0\end{matrix}\right|\sin 2x+\frac{1}{8}\left.\begin{matrix} \frac{\pi}{2}\\ 0\end{matrix}\right|x=\frac{1}{4}+\frac{\pi}{16}\)
b)
\(B=\int ^{1}_{\frac{1}{2}}\frac{e^x}{e^{2x}-1}dx=\frac{1}{2}\int ^{1}_{\frac{1}{2}}\left ( \frac{1}{e^x-1}-\frac{1}{e^x+1} \right )d(e^x)\)
\(\Leftrightarrow B=\frac{1}{2}\left.\begin{matrix} 1\\ \frac{1}{2}\end{matrix}\right|\left | \frac{e^x-1}{e^x+1} \right |\approx 0.317\)
c)
Có \(C=\int ^{1}_{0}\frac{(x+2)\ln(x+1)}{(x+1)^2}d(x+1)\).
Đặt \(x+1=t\)
\(\Rightarrow C=\int ^{2}_{1}\frac{(t+1)\ln t}{t^2}dt=\int ^{2}_{1}\frac{\ln t}{t}dt+\int ^{2}_{1}\frac{\ln t}{t^2}dt\)
\(=\int ^{2}_{1}\ln td(\ln t)+\int ^{2}_{1}\frac{\ln t}{t^2}dt=\frac{\ln ^22}{2}+\int ^{2}_{1}\frac{\ln t}{t^2}dt\)
Đặt \(\left\{\begin{matrix} u=\ln t\\ dv=\frac{dt}{t^2}\end{matrix}\right.\Rightarrow \left\{\begin{matrix} du=\frac{dt}{t}\\ v=\frac{-1}{t}\end{matrix}\right.\Rightarrow \int ^{2}_{1}\frac{\ln t}{t^2}dt=\left.\begin{matrix} 2\\ 1\end{matrix}\right|-\frac{\ln t+1}{t}=\frac{1}{2}-\frac{\ln 2 }{2}\)
\(\Rightarrow C=\frac{1}{2}-\frac{\ln 2}{2}+\frac{\ln ^22}{2}\)
aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa
Lời giải:
Theo nhị thức New-ton:
\((x+1)^{2n}=C^{0}_{2n}+C^{1}_{2n}x+C^2_{2n}x^2+...+C^{2n}_{2n}x^{2n}\)
\((x-1)^n=C^0_{2n}-C^1_{2n}x+C^2_{2n}x^2-.....-C^{2n-1}_{2n}x^{2n-1}+C^{2n}_{2n}x^{2n}\)
Trừ theo vế ta có:
\(\frac{(x+1)^{2n}-(x-1)^{2n}}{2}=C^1_{2n}x+C^3_{2n}x^3+...+C^{2n-1}_{2n}x^{2n-1}\)
\(\Rightarrow \int ^{1}_{0}\frac{(x+1)^{2n}-(x-1)^{2n}}{2}dx=\int ^{1}_{0}(C^1_{2n}x+C^3_{2n}x^3+...+C^{2n-1}_{2n}x^{2n-1})dx\)
Xét vế trái:
\(\text{VT}=\frac{1}{2}\int ^{1}_{0}(x+1)^{2n}d(x+1)-\frac{1}{2}\int ^{1}_{0}(x-1)^{2n}d(x-1)\)
\(=\left.\begin{matrix} 1\\ 0\end{matrix}\right|\frac{1}{2}\left ( \frac{(x+1)^{2n+1}-(x-1)^{2n+1}}{2n+1} \right )=\frac{2^{2n}-1}{2n+1}\)
Xét vế phải:
\(\text{VP}=\left.\begin{matrix} 1\\ 0\end{matrix}\right|\left ( \frac{C^{1}_{2n}x^2}{2}+\frac{C^{3}_{2n}x^4}{4}+....+\frac{C^{2n-1}_{2n}x^{2n}}{2n} \right )=\frac{1}{2}C^{1}_{2n}+\frac{1}{4}C^3_{2n}+...+\frac{1}{2n}C^{2n-1}_{2n}\)
Vậy \(A=\frac{2^{2n}-1}{2n+1}\)