cho \(S_n=\sqrt{\dfrac{1}{4}+\dfrac{2}{4^2}+\dfrac{3}{4^3}+.....+\dfrac{n}{4^n}}\)Tính \(s_{16}\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: \(=2\cdot\dfrac{5}{4}-3\cdot\dfrac{7}{6}+4\cdot\dfrac{9}{8}=\dfrac{5}{2}-\dfrac{7}{2}+\dfrac{9}{2}=\dfrac{7}{2}\)
b: \(=18-16\cdot\dfrac{1}{2}+\dfrac{1}{16}\cdot\dfrac{3}{4}\)
=10+3/64
=643/64
c: \(=\dfrac{2}{3}\cdot\dfrac{9}{4}-\dfrac{3}{4}\cdot\dfrac{8}{3}+\dfrac{7}{5}\cdot\dfrac{5}{14}=\dfrac{3}{2}-2+\dfrac{1}{2}=2-2=0\)
a) \(P=\dfrac{x^2+3x}{x^2-8x+16}:\left(\dfrac{x+4}{x}+\dfrac{1}{x-4}+\dfrac{19-x^2}{x^2-4x}\right)\left(x\ne0,x\ne4\right)\)
\(=\dfrac{x^2+3x}{\left(x-4\right)^2}:\left(\dfrac{x+4}{x}+\dfrac{1}{x-4}+\dfrac{19-x^2}{x\left(x-4\right)}\right)\)
\(=\dfrac{x^2+3x}{\left(x-4\right)^2}:\dfrac{\left(x+4\right)\left(x-4\right)+x+19-x^2}{x\left(x-4\right)}\)
\(=\dfrac{x^2+3x}{\left(x-4\right)^2}:\dfrac{x+3}{x\left(x-4\right)}=\dfrac{x\left(x+3\right)}{\left(x-4\right)^2}.\dfrac{x\left(x-4\right)}{x+3}=\dfrac{x^2}{x-4}\)
b) \(x=\sqrt{4+2\sqrt{3}}-\sqrt{4-2\sqrt{3}}=\sqrt{\left(\sqrt{3}+1\right)^2}-\sqrt{\left(\sqrt{3}-1\right)^2}\)
\(=\sqrt{3}+1-\sqrt{3}+1=2\)
\(\Rightarrow P=\dfrac{2^2}{2-4}=-2\)
a)\(ĐKXĐ:\left\{{}\begin{matrix}x\left(x-4\right)\ne0\\\dfrac{x+4}{x}+\dfrac{1}{x-4}+\dfrac{19-x^2}{x^2-4x}\ne0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x\ne4\\x\ne0\\x\ne-3\end{matrix}\right.\)
\(P=\dfrac{x\left(x+3\right)}{\left(x-4\right)}:\left(\dfrac{x^2-16+x+19-x^2}{x\left(x-4\right)}\right)=\dfrac{x\left(x+3\right)}{\left(x-4\right)^2}.\left(\dfrac{x\left(x-4\right)}{x+3}\right)=\dfrac{x^2}{x-4}\)
b)\(x=\sqrt{4+2\sqrt{3}}-\sqrt{4-2\sqrt{3}}=\sqrt{\left(\sqrt{3}+1\right)^2}=\sqrt{3+1}-\left(\sqrt{3}-1\right)=2\)
thay x=2 vào P ta có \(P=\dfrac{2^2}{2-4}=-2\)
\(\dfrac{1}{\left(n+1\right)\sqrt{n}+n\sqrt{n+1}}=\dfrac{\left(n+1\right)\sqrt{n}-n\sqrt{n+1}}{\left(n+1\right)^2n-n^2\left(n+1\right)}\)
\(=\dfrac{\left(n+1\right)\sqrt{n}-n\sqrt{n+1}}{n\left(n+1\right)}=\dfrac{1}{\sqrt{n}}-\dfrac{1}{\sqrt{n+1}}\)
Do đó:
\(VT=\dfrac{1}{\sqrt{1}}-\dfrac{1}{\sqrt{2}}+\dfrac{1}{\sqrt{2}}-\dfrac{1}{\sqrt{3}}+...+\dfrac{1}{\sqrt{n}}-\dfrac{1}{\sqrt{n+1}}\)
\(VT=1-\dfrac{1}{\sqrt{n+1}}< 1\) (đpcm)
\(a=\lim\dfrac{-2n^2}{\sqrt{n^2+2}+\sqrt{n^2+4}}=\lim\dfrac{-2n}{\sqrt{1+\dfrac{2}{n^2}}+\sqrt{1+\dfrac{4}{n^2}}}=\dfrac{-\infty}{2}=-\infty\)
\(b=\lim\dfrac{3-5n^2+10n}{n-2}=\lim\dfrac{-5n+10+\dfrac{3}{n}}{1-\dfrac{2}{n}}=\dfrac{-\infty}{1}=-\infty\)
\(c=\lim\left(\dfrac{1-\dfrac{1}{n}}{\dfrac{\sqrt{3}}{n}-1}-4.2^n\right)=-1-\infty=-\infty\)
\(d=\lim\dfrac{n^3-4n-\left(3n^2+4\right)\left(n-2\right)}{n^2-2n}=\lim\dfrac{-2n^3+6n^2-8n+8}{n^2-2n}\)
\(\lim\dfrac{-2n+6-\dfrac{8}{n}+\dfrac{8}{n^2}}{1-\dfrac{2}{n}}=\dfrac{-\infty}{1}=-\infty\)
\(e=\lim\dfrac{\sqrt{1+\dfrac{1}{n}}-\sqrt{5}}{\sqrt{1+\dfrac{1}{n}}+\sqrt{5}}=\dfrac{1-\sqrt{5}}{1+\sqrt{5}}\)
a)\(\dfrac{3}{4}-\dfrac{5}{2}-\dfrac{3}{5}=\dfrac{15}{20}-\dfrac{50}{20}-\dfrac{12}{20}=-\dfrac{47}{20}\)
b) \(\sqrt{7^2}+\sqrt{\dfrac{25}{16}-\dfrac{3}{2}}=7+\sqrt{\dfrac{1}{16}}=7+\dfrac{1}{4}=\dfrac{29}{4}\)
c) \(\dfrac{1}{2}.\sqrt{100}-\sqrt{\dfrac{1}{16}+\left(\dfrac{1}{3}\right)^0}=\dfrac{1}{2}.10-\sqrt{\dfrac{1}{16}+1}=5-\sqrt{\dfrac{17}{16}}\)
a: \(=\dfrac{-8}{9}-\dfrac{6}{5}+\dfrac{8}{9}=-\dfrac{6}{5}\)
c: \(=\dfrac{2}{3}-\dfrac{1}{3}=\dfrac{1}{3}\)
\(S_n=\sqrt{\dfrac{1}{4}+\dfrac{2}{4^2}+\dfrac{3}{4^3}+...+\dfrac{n}{4^n}}\)
\(S_{16}=\sqrt{\dfrac{1}{4}+\dfrac{2}{4^2}+\dfrac{3}{4^3}+...+\dfrac{16}{4^{16}}}\)
Đặt: \(S_{16}=\sqrt{T}\Leftrightarrow T=\dfrac{1}{4}+\dfrac{2}{4^2}+\dfrac{3}{4^3}+...+\dfrac{16}{4^{16}}\)
\(4T=1+\dfrac{2}{4}+\dfrac{3}{4^2}+...+\dfrac{16}{4^{15}}\)
\(4T-T=\left(1+\dfrac{2}{4}+\dfrac{3}{4^2}+...+\dfrac{16}{4^{15}}\right)-\left(\dfrac{1}{4}+\dfrac{2}{4^2}+\dfrac{3}{4^3}+...+\dfrac{16}{4^{16}}\right)\)
\(3T=1+\dfrac{1}{4}+\dfrac{1}{4^2}+...+\dfrac{1}{4^{15}}-\dfrac{16}{4^{16}}\)
Đặt: \(G=1+\dfrac{1}{4}+\dfrac{1}{4^2}+...+\dfrac{1}{4^{15}}\)
\(4G=4+1+\dfrac{1}{4}+...+\dfrac{1}{4^{14}}\)
\(4G-G=\left(4+1+\dfrac{1}{4}+...+\dfrac{1}{4^{14}}\right)-\left(1+\dfrac{1}{4}+\dfrac{1}{4^2}+...+\dfrac{1}{4^{15}}\right)\)
\(3G=4-\dfrac{1}{4^{15}}\)
\(G=\dfrac{4}{3}=\dfrac{1}{4^{15}.3}\)
\(T=\dfrac{4}{3}-\dfrac{1}{4^{15}.3}-\dfrac{16}{4^{16}}\)
\(S_{16}=\sqrt{T}=\sqrt{\dfrac{4}{3}-\dfrac{1}{4^{15}.3}-\dfrac{16}{4^{16}}}\)
bn ơi cái này mk bt lm r` sử dụng Xích - ma nha !
kq\(\simeq1,3472\)