Cho góc xOy nhọn, có Ot là tia phân giác. Lấy điểm A trên Ox, điểm B trên Oy sao cho OA = OB. Vẽ đoạn thẳng AB cắt Ot tại M.
a, C/minh: \(\Delta AOM=\Delta BOM\)
b, C/minh: AM = BM
c, Lấy điểm H trên tia Ot. Qua H vẽ đường thẳng // AB , đường thẳng này cắt Ox tại C, cắt Oy tại D. C/minh: \(OH\perp CD\)
a. Xét \(\Delta AOM\) và \(\Delta BOM\) có:
\(OA=OB\left(gt\right)\)
\(\widehat{O_1}=\widehat{O_2}\) ( tia phân giác Ot )
\(OM\) cạnh chung
Do đó \(\Delta AOM=\Delta BOM\left(c.g.c\right)\)
b. Vì \(\Delta AOM=\Delta BOM\left(cmt\right)\Rightarrow AM=BM\) ( cạnh tương ứng )
c. Vì \(\Delta AOM=\Delta BOM\left(cmt\right)\Rightarrow\widehat{AMO}=\widehat{BMO}\) ( góc tương ứng )
Mà \(\widehat{AMO}+\widehat{BMO}=180^0\) ( kề bù )
\(\Rightarrow\widehat{AMO}=\widehat{BMO}=\dfrac{180^0}{2}=90^0\)
Vì \(CD\text{//}AB\Rightarrow\widehat{AMO}=\widehat{CHM}\) ( đồng vị ) \(\Rightarrow\widehat{AMO}=\widehat{CHM}=90^0\) hay \(OH\perp CD\)
Hình tự vẽ nhé
a) Xét ΔAOM và ΔBOMcó :
OA = OB (gt)
AOM^=BOM^(gt)
OM : chung
=> ΔAOM= ΔBOM (c.g.c)
b) Từ Δ AOM = ΔBOM (cmt)
=> AM = BM (2 cạnh tương ứng)
c) Xét tam giác AOB có :
OA=OB (gt) OABˆ= OBAˆ do ΔAOM = ΔBOM (cmt))
=> ΔAOB cân tại O
Mà : AM = BM (câu b)
=> OM là đường trung tuyến trong tam giác cân thig đồng thời là đường trung trực trong Tam giác
=> OM ⊥ AB
Hay OH⊥CD (đpcm)