Cho A = {\(x \in \mathbb N \) | 11 ≤ x ≤ 91}
Số phần tử của A là : . . . . . .
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(C = \{ x \in \mathbb{R}|{x^2} < 0\} \). Tập hợp C không chứa phần tử nào vì bình phương mọi số thực đều không âm.
\(D = \{ a\} ,\) tập hợp D có duy nhất 1 phần tử là a.
\(E = \{ b;c;d\} ,\) tập hợp E có 3 phần tử.
\(\mathbb{N} = \left\{ {0;1;2;..} \right\}\): tập hợp N có vô số phần tử.
a) \(A = \{ - 2; - 1;0;1;2\} \)
\(B = \{ - 3; - 2; - 1;0;1;2;3\} \)
b) Mỗi phần tử của tập hợp A đều thuộc tập hợp B.
\(G = \{ x \in \mathbb{Z}|{x^2} -2 = 0\} \). Tập hợp G không chứa phần tử nào vì \({x^2} - 2 = 0 \Leftrightarrow x = \pm \sqrt 2 \notin \mathbb{Z}\)
\(\mathbb{N}* = \left\{ {1;2;3;..} \right\}.\): tập hợp N* có vô số phần tử.
a) Số 24 có các ước là: \( - 24; - 12; - 8; - 6; - 4; - 3; - 2; - 1;1;2;3;4;6;8;12;24.\) Do đó \(A = \{ - 24; - 12; - 8; - 6; - 4; - 3; - 2; - 1;1;2;3;4;6;8;12;24\} \), \(n\;(A) = 16.\)
b) Số 1113305 gồm các chữ số: 1;3;0;5. Do đó \(B = \{ 1;3;0;5\} \), \(n\;(B) = 4.\)
c) Các số tự nhiên là bội của 5 và không vượt quá 30 là: 0; 5; 10; 15; 20; 25; 30. Do đó \(C = \{ 0;5;10;15;20;25;30\} \), \(n\,(C) = 7.\)
d) Phương trình \({x^2} - 2x + 3 = 0\) vô nghiệm, do đó \(D = \emptyset \), \(n\,(D) = 0.\)
a) M = {10; 11; 12; 13; 14}
b) K = {1; 2; 3}
c) L = {0; 1; 2; 3}
a) \(M=\left\{10;11;12;13;14\right\}\)
b) \(K=\left\{1;2;3\right\}\)
c) \(L=\left\{0;1;2;3\right\}\)
a) \(A = \{ 3;2;1;0; - 1; - 2; - 3; -4; ...\} \)
Tập hợp B là tập các nghiệm nguyên của phương trình \(\left( {5x - 3{x^2}} \right)\left( {{x^2} + 2x - 3} \right) = 0\)
Ta có:
\(\begin{array}{l}\left( {5x - 3{x^2}} \right)\left( {{x^2} + 2x - 3} \right) = 0\\ \Leftrightarrow \left[ \begin{array}{l}5x - 3{x^2} = 0\\{x^2} + 2x - 3 = 0\end{array} \right.\\ \Leftrightarrow \left[ \begin{array}{l}\left[ \begin{array}{l}x = 0\\x = \frac{5}{3}\end{array} \right.\\\left[ \begin{array}{l}x = 1\\x = - 3\end{array} \right.\end{array} \right.\end{array}\)
Vì \(\frac{5}{3} \notin \mathbb Z\) nên \(B = \left\{ { - 3;0;1} \right\}\).
b) \(A \cap B = \left\{ {x \in A|x \in B} \right\} = \{ - 3;0;1\} = B\)
\(A \cup B = \) {\(x \in A\) hoặc \(x \in B\)} \( = \{ 3;2;1;0; - 1; - 2; - 3;...\} = A\)
\(A\,{\rm{\backslash }}\,B = \left\{ {x \in A|x \notin B} \right\} = \{ 3;2;1;0; - 1; - 2; - 3;...\} {\rm{\backslash }}\;\{ - 3;0;1\} = \{ 3;2; - 1; - 2; - 4; - 5; - 6;...\} \)
a) A là tập hợp các số tự nhiên nhỏ hơn 5, khi đó \(0 \in A,2 \in A,3 \in A.\)
B là tập hợp các nghiệm thực của phương trình \({x^2} - 3x + 2 = 0\), khi đó \(1 \in B,2 \in B.\)
C là tập hợp các thứ trong tuần, khi đó chủ nhật \( \in C,\) thứ năm \( \in C.\)
b)
\(\begin{array}{l}0 \in \mathbb{N},\;2 \in \mathbb{N}, - 5 \notin \mathbb{N},\;\frac{2}{3} \notin \mathbb{N}.\\0 \in \mathbb{Z},\; - 5 \in \mathbb{Z},\frac{2}{3} \notin \mathbb{Z},\sqrt 2 \; \notin \mathbb{Z}.\\0 \in \mathbb{Q},\;\frac{2}{3} \in \mathbb{Q},\sqrt 2 \notin \mathbb{Q},\;\pi \notin \mathbb{Q}.\\\frac{2}{3} \in \mathbb{R},\;\sqrt 2 \in \mathbb{R},e \notin \mathbb{R},\;\pi \notin \mathbb{R}.\end{array}\)
A={ 11 ; 12 ; 13 ; 14 ; 15 ; ... ; 91 }
Số phần tử của A là : ( 91 - 11 ) : 1 + 1 = 81 ( phần tử )
Số phần tử của A là :
(91-11):1+1=81 ( số hạng)
Bạn tin mình đi. Mình đã được cô mình dạy đó