Tìm 1 số chính phương có 5 chữ số trong đó chỉ có 1 chữ số 5; 1 chữ số 7 và 3 chữ số còn lại giống nhau
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
1)
đặt 3 chữ số còn lại là a.
Ta có tổng các chữ số của số cần tìm là 5+7+3a⋮3
Vì số này là số chính phương nên phải chia hết cho 9.
xét các trường hợp 0≤a≤9(a≠5;7)=>a ϵ(2;8)
Vì số chính phương có tận cùng là 0;1;4;5;6;9 suy ra số cần tìm phải có tận cùng là 5, cho nên hai chứ số tận cùng nhất thiết phải là 25.
Từ đây suy ra a=2.
Vậy số đó là: 27225 ( t/m đề bài 1 c/s 5, 1 c/s 7 và 3 c/s 2)
Số chính phương có 5 chữ số trong đó chỉ có một chữ sỗ 5, một chữ số bảy và ba chữ số còn lại giống nhau: 27225
Vì số chẵn nên chữ số hàng đơn vị phải là chữ số chẵn
+) Chữ số hàng đơn vị có 2 cách chọn (chọn 2 hoặc 4)
+) Với mỗi cách chọn chữ số hàng đơn vị : Có 4 cách chọn chữ số hàng trăm ( chọn 1 hoặc 3 hoặc 5 và chữ số chẵn còn lại)
+) Với mỗi cách chọn chữ số hàng trăm : Có 3 cách chọn chữ số hàng chục ( là Chọn một trong số còn lại )
Vậy có tất cả: 2 x 4 x 3 = 24 số
HÃy giải theo phương thức cấu tạo số phân tích rồi suy luận ra
10 \(\le\)n \(\le\)99 => 21 < 2n + 1 < 199 và 31 < 3n + 1 < 298
Vì 2n + 1 là số lẻ mà 2n + 1 là số chính phương
=> 2n + 1 thuộc { 25 ; 49 ; 81 ; 121 ; 169 } tương ứng số n thuộc { 12; 24; 40; 60; 84 } ( 1 )
Vì 3n + 1 là số chính phương và 31 < 3n + 1 < 298
=> 3n + 1 thuộc { 49 ; 64 ; 100 ; 121 ; 169 ; 196 ; 256 ; 289 } tương ứng n thuộc { 16 ; 21 ; 33 ; 40 ; 56 ; 65 ; 85 ; 96 } ( 2 )
Từ 1 và 2 => n = 40 thì 2n + 1 và 3n + 1 đều là số chính phương