K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

HQ
Hà Quang Minh
Giáo viên
23 tháng 9 2023

Hình 30a:

\(f\left( x \right) > 0\) có tập nghiệm là \(S = \left( { - \infty ;1} \right) \cup \left( {4; + \infty } \right)\)

\(f\left( x \right) < 0\) có tập nghiệm là \(S = \left( {1;4} \right)\)

\(f\left( x \right) \ge 0\) có tập nghiệm là \(S = \left( { - \infty ;1} \right] \cup \left[ {4; + \infty } \right)\)

\(f\left( x \right) \le 0\) có tập nghiệm là \(S = \left[ {1;4} \right]\)

Hình 30b:

\(f\left( x \right) > 0\) có tập nghiệm là \(S = \mathbb{R}\backslash \left\{ 2 \right\}\)

\(f\left( x \right) < 0\) có tập nghiệm là \(S = \emptyset \)

\(f\left( x \right) \ge 0\) có tập nghiệm là \(S = \mathbb{R}\)

\(f\left( x \right) \le 0\) có tập nghiệm là \(S = \left\{ 2 \right\}\)

Hình 30c:

\(f\left( x \right) > 0\) có tập nghiệm là \(S = \mathbb{R}\)

\(f\left( x \right) < 0\) có tập nghiệm là \(S = \emptyset \)

\(f\left( x \right) \ge 0\) có tập nghiệm là \(S = \mathbb{R}\)

\(f\left( x \right) \le 0\) có tập nghiệm là \(S = \emptyset \)

27 tháng 4 2022

có:

+) đạo hàm của f(x) = f'(x) = 3x2 

+) phương trình tiếp tuyến là : y= f'(x).(x-x0) + f(x0

=> y = 3x2.(x-1) + 13 + 3 = 3x3 - 3x2 + 4 

 

 

27 tháng 4 2022

=-=-=--=-=-=--0-=-09876543w3er567890-=-0987654e3wq