K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

5 tháng 2 2022

a. Thay m = 1 ta được 

\(\left\{{}\begin{matrix}x+2y=4\\2x-3y=1\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}2x+4y=8\\2x-3y=1\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}y=1\\x=2\end{matrix}\right.\)

b, Để hpt có nghiệm duy nhất khi \(\dfrac{1}{2}\ne-\dfrac{2}{3}\)*luôn đúng*

\(\left\{{}\begin{matrix}2x+4y=2m+6\\2x-3y=m\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}7y=m+6\\x=m+3-2y\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}y=\dfrac{m+6}{7}\\x=m+3-2\dfrac{m+6}{7}\end{matrix}\right.\)

\(\Leftrightarrow x=m+3-\dfrac{2m+12}{7}=\dfrac{7m+21-2m-12}{7}=\dfrac{5m+9}{7}\)

Ta có : \(\dfrac{m+6}{7}+\dfrac{5m+9}{7}=-3\Rightarrow6m+15=-21\Leftrightarrow m=-6\)

5 tháng 2 2022

\(\left\{{}\begin{matrix}x+2y=m+3\\2x-3y=m\end{matrix}\right.\)

\(a,Khi.m=1\Rightarrow\left\{{}\begin{matrix}x+2y=1+3\\2x-3y=1\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}x=4-2y\\2\left(4-2y\right)-3y=1\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}x=4-2y\\8-4y-3y=1\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}x=4-2y\\7y=7\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}y=1\\x=2\end{matrix}\right.\rightarrow\left(x,y\right)=\left(2,1\right)\)

\(b,\left\{{}\begin{matrix}x+2y=m+3\\2x-3y=m\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}2x+4y=2m+6\left(1\right)\\2x-3y=m\left(2\right)\end{matrix}\right.\)

\(\left(1\right),\left(2\right)\Rightarrow\left\{{}\begin{matrix}7y=m+6\\x+2y=m+3\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}x=\dfrac{5m+9}{7}\\y=\dfrac{m+6}{7}\end{matrix}\right.\Rightarrow\) HPT có no duy nhất 

\(\left(x,y\right)=\left(\dfrac{5m+9}{7};\dfrac{m+6}{7}\right)\)

\(x+y=-3\)

\(\dfrac{5m+9}{7}+\dfrac{m+6}{7}=-3\)

\(\Leftrightarrow5m+9+m+6=-21\)

\(\Leftrightarrow6m=-36\Rightarrow m=-6\)

Với m = -6 thì hệ pt có no duy nhất TM x + y = -3

10 tháng 3 2022

a, \(\left\{{}\begin{matrix}m^2x-my=2m\\x+my=1\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}\left(m^2+1\right)x=2m+1\\y=\dfrac{1-x}{m}\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=\dfrac{2m+1}{m^2+1}\\y=\dfrac{1-\dfrac{2m+1}{m^2+1}}{m}\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}x=\dfrac{2m+1}{m^2+1}\\y=\dfrac{\dfrac{m^2+1-2m-1}{m^2+1}}{m}\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=\dfrac{2m+1}{m^2+1}\\y=\dfrac{\dfrac{m^2-2m}{m^2+1}}{m}\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=\dfrac{2m+1}{m^2}\\y=\dfrac{m^2-2m}{m^2+1}:m=\dfrac{m\left(m-2\right)}{m\left(m^2+1\right)}=\dfrac{m-2}{m^2+1}\end{matrix}\right.\)

b, Để hpt có nghiệm duy nhất khi \(\dfrac{m}{1}\ne-\dfrac{1}{m}\Leftrightarrow m^2\ne-1\left(luondung\right)\)

\(\dfrac{2m+1}{m^2}+\dfrac{m-2}{m^2+1}=-1\)

\(\Leftrightarrow\left(2m+1\right)\left(m^2+1\right)+m^2\left(m-2\right)=-m^2\left(m^2+1\right)\)

\(\Leftrightarrow2m^3+2m+m^2+1+m^3-2m^2=-m^4-m^2\)

\(\Leftrightarrow3m^3-m^2+2m+1=-m^4-m^2\)

\(\Leftrightarrow m^4+3m^3+2m+1=0\)

bạn tự giải nhé 

24 tháng 11 2018

Bài 2:

1.Thay m=3, ta có:

\(\left\{{}\begin{matrix}3x+2y=5\\2x+y=3\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}y=1\\x=1\end{matrix}\right.\)

24 tháng 11 2018

Bài 1:

\(\left\{{}\begin{matrix}\left|x+1\right|+\left|y-1\right|=5\\\left|x+1\right|-4y=-4\end{matrix}\right.\)

\(\Rightarrow\left|y-1\right|-4y=9\)\(\Leftrightarrow\left[{}\begin{matrix}y=-3,\left(3\right)\left(KTM\right)\left(ĐK:y\ge1\right)\\y=-1,6\left(TM\right)\left(ĐK:y< 1\right)\end{matrix}\right.\)

Thay y=-1,6 vào hpt, ta được:

\(\left\{{}\begin{matrix}\left|x+1\right|=2,4\\\left|x+1\right|=-10,4\left(vl\right)\end{matrix}\right.\)

Vậy pt vô nghiệm.

a: \(\Leftrightarrow\left\{{}\begin{matrix}x-\dfrac{1}{2}y=2\\\dfrac{3}{2}x-y=\dfrac{3}{2}\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}2x-y=4\\3x-2y=3\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}4x-2y=8\\3x-2y=3\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}x=5\\2x-y=4\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=5\\y=2x-4=6\end{matrix}\right.\)

9 tháng 1 2022

Bạn làm hộ mình phần b thôi bn

 

Để hệ phương trình có nghiệm duy nhất thì \(\dfrac{1}{m}\ne\dfrac{m}{1}\)

=>\(m^2\ne1\)

=>\(m\notin\left\{1;-1\right\}\)

Khi \(m\notin\left\{1;-1\right\}\) thì \(\left\{{}\begin{matrix}x+my=m+1\\mx+y=2m\end{matrix}\right.\)

=>\(\left\{{}\begin{matrix}x=m+1-my\\m\left(m+1-my\right)+y=2m\end{matrix}\right.\)

=>\(\left\{{}\begin{matrix}x=m+1-my\\m^2+m-m^2y+y-2m=0\end{matrix}\right.\)

=>\(\left\{{}\begin{matrix}y\left(-m^2+1\right)=-m^2+m\\x=m+1-my\end{matrix}\right.\)

=>\(\left\{{}\begin{matrix}y=\dfrac{m^2-m}{m^2-1}=\dfrac{m\left(m-1\right)}{\left(m-1\right)\left(m+1\right)}=\dfrac{m}{m+1}\\x=m+1-\dfrac{m^2}{m+1}\end{matrix}\right.\)

=>\(\left\{{}\begin{matrix}y=\dfrac{m}{m+1}\\x=\dfrac{\left(m+1\right)^2-m^2}{m+1}=\dfrac{2m+1}{m+1}\end{matrix}\right.\)

Để \(\left\{{}\begin{matrix}x>=2\\y>=1\end{matrix}\right.\) thì \(\left\{{}\begin{matrix}\dfrac{2m+1}{m+1}>=2\\\dfrac{m}{m+1}>=1\end{matrix}\right.\)

=>\(\left\{{}\begin{matrix}\dfrac{2m+1-2\left(m+1\right)}{m+1}>=0\\\dfrac{m-m-1}{m+1}>=0\end{matrix}\right.\)

=>\(\left\{{}\begin{matrix}\dfrac{2m+1-2m-2}{m+1}>=0\\\dfrac{-1}{m+1}>=0\end{matrix}\right.\)

=>\(\left\{{}\begin{matrix}-\dfrac{1}{m+1}>=0\\-\dfrac{1}{m+1}>=0\end{matrix}\right.\Leftrightarrow m+1< 0\)

=>m<-1

18 tháng 1 2023

a, Thay \(m=-1\) vào

\(=>\left\{{}\begin{matrix}-x+y=1\\2x-y=-1\end{matrix}\right.\\ =>\left\{{}\begin{matrix}x=0\\y=1\end{matrix}\right.\)

b, Để hệ pt có nghiệm duy nhất :

\(\dfrac{m}{2}\ne\dfrac{1}{-1}\\ =>\dfrac{m}{2}\ne-1\\ =>m\ne-2\)

18 tháng 1 2023

Cảm ơn ạ

a: Khi m=căn 2 thì hệ sẽ là:

2x-y=căn 2+1 và x+y*căn 2=2

=>\(\left\{{}\begin{matrix}2x-y=\sqrt{2}+1\\2x+2y\sqrt{2}=4\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}-y-2y\sqrt{2}=\sqrt{2}-3\\2x-y=\sqrt{2}+1\end{matrix}\right.\)

=>\(\left\{{}\begin{matrix}y=-1+\sqrt{2}\\2x=\sqrt{2}+1+\sqrt{2}-1=2\sqrt{2}\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=\sqrt{2}\\y=\sqrt{2}-1\end{matrix}\right.\)

b: Để hệ có nghiệm thì 2/1<>-1/m

=>-1/m<>2

=>m<>-1/2