K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

a: Xét ΔOAD và ΔOCB có

OA=OC

góc AOD chung

OD=OB

Do đó: ΔOAD=ΔOCB

b: Xét ΔGAB và ΔGCD có

\(\widehat{GAB}=\widehat{GCD}\)

AB=CD

\(\widehat{GBA}=\widehat{GDC}\)

Do đó: ΔGAB=ΔGCD

Suy ra: GB=GD

Xét ΔOGB và ΔOGD có

OG chung

GB=GD

OB=OD

Do đó: ΔOGB=ΔOGD

Suy ra: \(\widehat{BOG}=\widehat{DOG}\)

hay OG là tia pân giác của góc xOy

c: Xét ΔODB có

DA là đường trung tuyến

CB là đường trung tuyến

DA cắt CB tại G

Do đó: G là trọng tâm

Suy ra: AG=1/3AD=2018/3(cm)

30 tháng 12 2015

a: Xét ΔOAD và ΔOCB có

OA=OC

góc AOD chung

OD=OB

Do đó: ΔOAD=ΔOCB

b: Xét ΔGAB và ΔGCD có

\(\widehat{GAB}=\widehat{GCD}\)

AB=CD

\(\widehat{GBA}=\widehat{GDC}\)

Do đó: ΔGAB=ΔGCD

Suy ra: GB=GD

Xét ΔOGB và ΔOGD có

OG chung

GB=GD

OB=OD

Do đó: ΔOGB=ΔOGD

Suy ra: \(\widehat{BOG}=\widehat{DOG}\)

hay OG là tia pân giác của góc xOy

c: Xét ΔODB có

DA là đường trung tuyến

CB là đường trung tuyến

DA cắt CB tại G

Do đó: G là trọng tâm

Suy ra: AG=1/3AD=2018/3(cm)

20 tháng 6 2017

Bài 1 :

Xét tam giác ABC và ADE có :

           góc EAD = góc CAB (đối đỉnh)

           CA=EA (gt)

            BA=DA (gt)

suy ra tam giác ABC=ADE (c.g.c)

suy ra :DE =BC ( 2 cạnh tương ứng ) ; góc E= góc C ; góc D = góc B (các góc tương ứng )

        Mà M; N lần lượt là trung điểm của DE và BC suy ra EN=DN=BM=CM

Xét tam giác ENA và CMA có:

         EN = CM ( cmt)

         góc E = góc C (cmt)

         AE = AC (gt)

suy ra tam giác EAN = CMA (c.g.c) suy ra AM =AN ( 2 cạnh tương ứng ) 

Xét tam giác NDA và MBA có:

            góc D= góc B (cmt)

            ND = MB (cmt )

            DA = BA (cmt )

suy ra tam giác NDA = MBA (c.g.c)suy ra  góc NAD =  góc MAB

   Ta có góc DAC +MAC+MAB = 180 độ ( vì D nằm trên tia đối của tia AB )

   Mà góc NAD = góc MAB suy ra góc DAC+MAC+NAD =180 độ

suy ra 3 điểm M,A,N thẳng hàng          (2)

                   Từ (1) và (2 ) suy ra A là trung điểm của MN

( mình vẽ hình hơi xấu , mong bạn thông cảm . Nếu đúng nhớ kết bạn với mình nhé , mong tin bạn ^-^)

Bài 3: 

Xét ΔHMB vuông tại H và ΔKMC vuông tại K có

MB=MC

\(\widehat{HMB}=\widehat{KMC}\)

Do đo: ΔHMB=ΔKMC

Suy ra: BH=CK

21 tháng 2 2021

b) Xét tam giác AOC và tam giác BOC có:OA=OB(gt)góc AOC = góc BOC(OC là tia phân giác góc AOB)OC chung=>tam giác AOC=tam giác BOC(c-g-c)=>góc OAC= góc OBC=90độ(2 góc tương ứng)=>BC vuông góc với Ox

11 tháng 8 2021

a.Xét $\triangle$OAI và $\triangle$OBI có:

$\widehat{AOI}$ = $\widehat{BOI}$(OI là phân giác của $\widehat{xOy}$)

OB = OA(gt)

OI chung

=> $\triangle$OAI = $\triangle$OBI(c-g-c)

=>$\widehat{OIA}$ = $\widehat{OIB}$(2 góc t/ứ)

mà $\widehat{OIA}$ + $\widehat{OIB}$ = $180^0$

=>$\widehat{OIA}$ = $\widehat{OIB}$ = $180^0$ : 2 = $90^0$

=> OI$\bot$AB(đpcm)

b.Xét $\triangle$OBA có

AD là đng cao t/ứ vs OB(gt)

OI là đng cao t/ứ vs AB(cmt)

AD cắt OI tại C(gt)

=>C là trực tâm của $\triangle$OBA(tính chất 3 đng cao của $\triangle$)

=>BC ⊥Ox(đpcm)

Bài 1: Cho tam giác ABC cân (AB=AC), O là giao điểm 3 trung trực 2 cạnh của tam giác ABC (O nằm trong tam giác). Trên tia đối của các tia AB và CA ta lấy 2 điểm M, N sao cho AM=CN. Chứng minh:a) Góc OAB = góc OCAb) Tam giác AOM = tam giác CONc) Hai trung trực OM, ON cắt nhau tại I. Chứng minh OI là tia phân giác của góc MONBài 2: Cho góc nhọn xOy; trên tia Ox lấy 2 điểm A và B (A nằm giữa O, B). Trên Oy lấy 2 điểm C, D (C...
Đọc tiếp

Bài 1: Cho tam giác ABC cân (AB=AC), O là giao điểm 3 trung trực 2 cạnh của tam giác ABC (O nằm trong tam giác). Trên tia đối của các tia AB và CA ta lấy 2 điểm M, N sao cho AM=CN. Chứng minh:
a) Góc OAB = góc OCA
b) Tam giác AOM = tam giác CON
c) Hai trung trực OM, ON cắt nhau tại I. Chứng minh OI là tia phân giác của góc MON
Bài 2: Cho góc nhọn xOy; trên tia Ox lấy 2 điểm A và B (A nằm giữa O, B). Trên Oy lấy 2 điểm C, D (C nằm giữa O, D) sao cho OA=OC và OB=OD. Chứng minh:
a) Tam giác AOD = tam giác COB
b) Tam giác ABD = tam giác CDB
c) Gọi I là giao điểm của AD và BC. Chứng minh IA=IC; IB=ID
Bài 3: Cho tam giác ABC. Qua A kẻ đường thẳng song song với BC, qua C kẻ đường thẳng song song với AB, hai đường thẳng này cắt nhau tại D
a) Chứng minh: AD=BC và AB=DC
b) Gọi M, N lần lượt là trung điểm của BC và AD. Chứng minh: AM=CN
c) Gọi O là giao điểm của AC và BD. Chứng minh: OA=OC và OB=OD
d) Chứng minh: M, O, N thẳng hàng
Bài 4: Cho góc xOy = 60 độ. Vẽ Oz là tia phân giác của góc xOy 
a) Tính góc xOy?
b) Trên Ox lấy điểm A và trên Oy lấy điểm B sao cho OA=OB. Tia Oz cắt AB tại I. Chứng minh tam giác OIA = tam giác OIB
c) Chứng minh OI vuông góc AB
d) Trên tia Oz lấy điểm M. Chứng minh MA=MB
e) Qua M vẽ đường thẳng song song với AB cắt tia Ox, Oy lần lượt tại C và D. Chứng minh BD=AC

       Mọi ng giúp mình giải bài này nhé! Cảm ơn mn <3

7
31 tháng 5 2018

Mình nghĩ khó mà có người giải hết chỗ bài tập đấy của bạn, nhiều quá

31 tháng 5 2018

3/ (Bạn tự vẽ hình giùm)

a/ \(\Delta ABC\)và \(\Delta ADC\)có:

\(\widehat{BAC}=\widehat{ACD}\)(AB // DC; ở vị trí so le trong)

Cạnh AC chung

\(\widehat{CAD}=\widehat{ACB}\)(AB // DC; ở vị trí so le trong)

=> \(\Delta ABC\)\(\Delta ADC\)(g. c. g)

=> AD = BC (hai cạnh tương ứng)

và AB = DC (hai cạnh tương ứng)

b/ Ta có AD = BC (cm câu a)

và \(AN=\frac{1}{2}AD\)(N là trung điểm AD)

và \(MC=\frac{1}{2}BC\)(M là trung điểm BC)

=> AN = MC

Chứng minh tương tự, ta cũng có: BM = ND

\(\Delta AMB\)và \(\Delta CND\)có:

BM = ND (cmt)

\(\widehat{ABM}=\widehat{NDC}\)(AB // CD; ở vị trí so le trong)

AB = CD (\(\Delta ABC\)\(\Delta ADC\))

=> \(\Delta AMB\)\(\Delta CND\)(c. g. c)

=> \(\widehat{BAM}=\widehat{NCD}\)(hai góc tương ứng)

và \(\widehat{BAC}=\widehat{ACN}\)(\(\Delta ABC\)\(\Delta ADC\))

=> \(\widehat{BAC}-\widehat{BAM}=\widehat{ACN}-\widehat{NCD}\)

=> \(\widehat{MAC}=\widehat{ACN}\)(1)

Chứng minh tương tự, ta cũng có \(\widehat{AMC}=\widehat{ANC}\)(2)

và AN = MC (cmt) (3)

=> \(\Delta MAC=\Delta NAC\)(g, c. g)

=> AM = CN (hai cạnh tương ứng) (đpcm)

c/ \(\Delta AOB\)và \(\Delta COD\)có:

\(\widehat{BAO}=\widehat{OCD}\)(AB // DC; ở vị trí so le trong)

AB = CD (cm câu a)

\(\widehat{ABO}=\widehat{ODC}\)(AD // BC; ở vị trí so le trong)

=> \(\Delta AOB\)\(\Delta COD\)(g. c. g)

=> OA = OC (hai cạnh tương ứng)

và OB = OD (hai cạnh tương ứng)

d/ \(\Delta ONA\)và \(\Delta MOC\)có:

\(\widehat{AON}=\widehat{MOC}\)(đối đỉnh)

OA = OC (O là trung điểm AC)

\(\widehat{OAN}=\widehat{OCM}\)(AM // NC; ở vị trí so le trong)

=> \(\Delta ONA\)\(\Delta MOC\)(g. c. g)

=> ON = OM (hai cạnh tương ứng)

=> O là trung điểm MN

=> M, O, N thẳng hàng (đpcm)

Bài 2. Cho ABC có A = 120°. Tia phân giác của A cắt BC tại D. Tia phân giác củaADC cắt AC tại I. Gọi H, K, E lần lượt là hình chiếu của I trên đương thẳng AB,BC, AD. Chứng minh:a) AC là tia phân giác của DAH .b) IH = IKBài 5. Cho tam giác ABC vuông tại A. Từ một điểm K bất kì trên cạnh BC, vẽ KH AC (HAC). Trên tia đối của tia HK lấy điểm I sao cho HI = HK. Chứngminh:a) Chứng minh AB //HKb) Chứng minh KAH...
Đọc tiếp

Bài 2. Cho ABC có A = 120°. Tia phân giác của A cắt BC tại D. Tia phân giác của
ADC cắt AC tại I. Gọi H, K, E lần lượt là hình chiếu của I trên đương thẳng AB,
BC, AD. Chứng minh:
a) AC là tia phân giác của DAH .
b) IH = IK
Bài 5. Cho tam giác ABC vuông tại A. Từ một điểm K bất kì trên cạnh BC, vẽ KH
 AC (HAC). Trên tia đối của tia HK lấy điểm I sao cho HI = HK. Chứng
minh:
a) Chứng minh AB //HK
b) Chứng minh KAH IAH 
c) Chứng minh AKI cân
Bài 7. Cho ABC, AB = AC. Trên cạnh AB lấy điểm D, trên cạnh AC lấy điểm E sao
cho AD = AE. Gọi M là giao điểm của BE và CD. Chứng minh:
a) BE = CD b) BMD = CME
c) Đường vuông góc với OE tại E cắt Ox, Oy lần lượt tại M, N. Chứng minh
MN / / AC //BD.
Bài 8. Cho xOy . Lấy các điểm A,B thuộc tia Ox sao cho OA > OB. Lấy các điểm C, D
thuộc Oy sao cho OC = OA, OD = OB. Gọi E là giao điểm của AD và BC
Chứng minh.:
a) AD = BC b) ABE = CDE
c) OE là tia phân giác của góc xOy

4
24 tháng 4 2020

mik ngu hình lắm xin lỗi nha

24 tháng 4 2020

ngu thì xen zô nói làm j