Giải phương trình vô tỉ: \(4x^2-11x+6=\left(x-1\right)\sqrt{2x^2-6x+6}\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
d)\(2x^2+4x=\sqrt{\frac{x+3}{2}}\)
ĐK:\(x\ge-3\)
\(\Leftrightarrow4x^4+16x^3+16x^2=\frac{x+3}{2}\)
\(\Leftrightarrow\frac{8x^4+32x^3+32x^2-x-3}{2}=0\)
\(\Leftrightarrow8x^4+32x^3+32x^2-x-3=0\)
\(\Leftrightarrow\left(2x^2+3x-1\right)\left(4x^2+10x+3\right)=0\)
d)\(2x^2+4x=\sqrt{\frac{x+3}{2}}\)
ĐK:\(x\ge-3\)
\(\Leftrightarrow4x^4+16x^3+16x^2=\frac{x+3}{2}\)
\(\Leftrightarrow\frac{8x^4+32x^3+32x^2-x-3}{2}=0\)
\(\Leftrightarrow8x^4+32x^3+32x^2-x-3=0\)
\(\Leftrightarrow\left(2x^2+3x-1\right)\left(4x^2+10x+3\right)=0\)
a)\(\sqrt{2x^2+8x+6}+\sqrt{x^2-1}=2x+2\)
ĐK:tự xác định
\(pt\Leftrightarrow\sqrt{2\left(x+1\right)\left(x+3\right)}+\sqrt{\left(x-1\right)\left(x+1\right)}-2\left(x+1\right)=0\)
\(\Leftrightarrow\sqrt{x+1}\left(\sqrt{2\left(x+3\right)}+\sqrt{x-1}-2\sqrt{x+1}\right)=0\)
Suy ra x=-1 là nghiệm và pt \(\sqrt{2\left(x+3\right)}+\sqrt{x-1}=2\sqrt{x+1}\)
\(\Leftrightarrow2\left(x+3\right)+x-1+2\sqrt{2\left(x+3\right)\left(x-1\right)}=4\left(x+1\right)\)
\(\Leftrightarrow2\sqrt{2\left(x+3\right)\left(x-1\right)}=x-1\)
\(\Leftrightarrow8\left(x+3\right)\left(x-1\right)-\left(x-1\right)^2=0\)
\(\Leftrightarrow\left(x-1\right)\left(8x+24-x+1\right)=0\)
\(\Leftrightarrow\left(x-1\right)\left(7x+25\right)=0\Rightarrow x=1\) (thỏa và 7x+25=0 loại do điều kiện....)
b nghiệm xấu quá để mình xem lại :v
\(\Leftrightarrow\sqrt{2x+6}+\sqrt{x-1}=2\sqrt{x+1}\)
\(\Leftrightarrow\sqrt{2x+6}-2\sqrt{2}+\sqrt{x-1}=2\sqrt{x+1}-2\sqrt{2}\)
\(\Leftrightarrow\frac{2\left(x-1\right)}{\sqrt{2x+6}+2\sqrt{2}}+\sqrt{x-1}=\frac{2\sqrt{x-1}}{\sqrt{x+1}+2\sqrt{2}}\)
\(\Leftrightarrow\frac{2\sqrt{x-1}}{\sqrt{2x+6}+2\sqrt{2}}+1=\frac{2\sqrt{x-1}}{\sqrt{x+1}+1\sqrt{2}}\)
đến đây thì chịu
tìm đc 1 nghiệm là -1;1,nên bình phương lên
pt<=>\(\sqrt{\left(x+6\right)^3}+\sqrt{x+6}=\left(x^2+4x\right)^3+x^2+4x\)
đặt\(\sqrt{x+6}=a;x^2+4x=b\)
Ta viết lại pt thành: \(\left(2x-3\right)^2+x-3=\left(x-1\right)\sqrt{\left(x-1\right)\left(2x-3\right)-\left(x-3\right)}\)
Đặt: \(\left\{{}\begin{matrix}a=2x-3\\b=\sqrt{\left(x-1\right)\left(2x-3\right)-\left(x-3\right)}\end{matrix}\right.\) ta thu được hệ pt:
\(\left\{{}\begin{matrix}a^2+x-3=\left(x-1\right)b\\b^2+x-3=\left(x-1\right)a\end{matrix}\right.\) Trừ 2pt của hệ ta có:
\(\Leftrightarrow a^2-b^2=\left(x-1\right)\left(b-a\right)\)
\(\Leftrightarrow\left(a-b\right)\left(a+b+x-1\right)=0\)
Ta có trường hợp 1:
\(a=b\Leftrightarrow2x-3=\sqrt{2x^2-6x+6}\Leftrightarrow\left\{{}\begin{matrix}x\ge\frac{3}{2}\\2x^2-6x+3=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=\frac{3-\sqrt{3}}{2}\left(ktm\right)\\x=\frac{3+\sqrt{3}}{2}\left(tmđk\right)\end{matrix}\right.\)
Tương tự ta có trường hợp 2:
\(2x-3+\sqrt{2x^2-6x+6}+x-3=0\Leftrightarrow\sqrt{2x^2-6x}=6-3x\Leftrightarrow\left\{{}\begin{matrix}x\le2\\7x^2-30x+36=0\end{matrix}\right.\left(vn\right)\)
Vậy pt có \(n_0\) \(S=\left\{x=\frac{3+\sqrt{3}}{2}\right\}\)