Câu 1:
Cho M = 1+3+3^2+3^3+3^4+...+3^99+3^100. Tìm số dư khi chia M cho13, Chia M cho 14
Câu 2:
Cho A= 4^0+4^1+4^2+...+4^2016
Câu 3:Tìm x và y biết
/x/+/y/=25
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
1)
Ta thấy 99 là số lẻ, 20y là số chẵn với mọi y
=> Để 6x + 99 = 20y thì 6x là số lẻ
=> x = 0
Thay x = 0 ta có 60 + 99 = 20y
=> 1 + 99 = 20y
=> 100 = 20y
=> y = 100 ; 20
=> y = 5
Vậy x = 0, y = 5
`Answer:`
2.
Ta có: \(M=1+3+3^2+3^3+3^4+...+3^{98}+3^{99}+3^{100}\)
\(=\left(1+3\right)+\left(3^2+3^3+3^4\right)+...+\left(3^{98}+3^{99}+3^{100}\right)\)
\(=4+3^2.\left(1+3+3^2\right)+...+3^{98}.\left(1+3+3^2\right)\)
\(=4+3^2.13+3^{98}.13\)
\(=4+13.\left(3^2+...+3^{98}\right)\)
Vậy `M` chia `13` dư `4`
Ta có: \(M=1+3+3^2+3^4+...+3^{99}+3^{100}\)
\(=1+\left(3+3^2+3^3+3^4\right)+\left(3^5+3^6+3^7+3^8\right)+...+\left(3^{97}+3^{98}+3^{99}+3^{100}\right)\)
\(=1+3.\left(1+3+3^2+3^3\right)+3^5.\left(1+3+3^2+3^3\right)+...+3^{97}.\left(1+3+3^2+3^3\right)\)
\(=1+3.40+3^5.40+...+3^{97}.40\)
\(=1+40.\left(3+3^5+...+3^{97}\right)\)
Mà ta thấy \(40.\left(3+3^5+...+3^{97}\right)⋮40\)
Vậy `M` chia `40` dư `1`
Câu 1: (a;b)= {(0;1); (1;0); (2;2); (1;3); (3;1); (4;3); (3;4); (5;5); (7;3); (3;7); (2;5); (5;2); (1;6); (6;1); (9;1); (1;9); (4;6); (6;4); (2;8); (8;2); (6;7); (7;6); (8;5); (5;8); (9;4); (4;9); (9;7); (7;9); (8;8)}
Con " Nguyễn Huyền Trang " đéo biết thì trả lời làm cái l*n gì
1) Ta có : 5xy + 2x - 5y = 7
=> x(5y - 2) - 5y + 2 = 7 + 2
=> x(5y - 2) - (5y - 2) = 9
=> (5y - 2)(x - 1) = 9
Với \(x;y\inℕ\Rightarrow\hept{\begin{cases}5y-2\inℕ^∗\\x-1\inℕ^∗\end{cases}}\)
=> có 9 = 3.3 = 1.9
Lập bảng xét các trường hợp
x - 1 | 1 | 9 | 3 |
5y - 2 | 9 | 1 | 3 |
x | 2 | 10 | 4(tm) |
y | 2,2 | 0,6 | 1(tm) |
Vậy x = 4 ; y = 1
2) A = 75.(42018 + 42017 + .... + 42 + 4) + 25
Đặt B = 42018 + 42017 + .... + 42 + 4
Khi đó A = 75B + 25
<=> 4B = 42019 + 42018 + .... + 43 + 42
Lấy 4B trừ B cả 2 vế ta có :
4B - B = ( 42019 + 42018 + .... + 43 + 42) - (42018 + 42017 + .... + 42 + 4)
3B = 42019 - 4
=> B = \(\frac{4^{2019}-4}{3}\)
=> A = \(75\frac{4^{2019}-4}{3}+25=25.\left(4^{2019}-4\right)+25=25\left(4^{2019}-3\right)=25.4^{2019}-75\)
Vì \(25.4^{2019}⋮4^{2019}\Rightarrow25.4^{2019}-75:4^{2019}\text{ dư 75 }\Rightarrow A:4^{2019}\text{ dư 75}\)
Vậy số dư khi A chia cho 42019 là 75
Câu 1: Câu hỏi của masrur chỉ có số dư khi chia M cho 13 nhưng bạn áp dụng thêm để ra M chia cho 14
Câu 2: Đề thiếu
Câu 3: Đề không tồn tại
Sorry
Câu 2
Cho A= 4^0+4^1+4^2+...+4^2017;3. Tính B-A.
:))