Cho số a bất kỳ. Chứng minh rằng \(\dfrac{a^{2012}+2012}{\sqrt{a^{2012}+2011}}>2\)
mong mọi nguòi giúp thanks you
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(VT=\sqrt{a^{2012}+2011}+\dfrac{1}{\sqrt{a^{2012}+2011}}>=2\sqrt{\sqrt{a^{2012}+2011}\cdot\dfrac{1}{\sqrt{a^{2012}+2011}}}=2\)
Đặt \(\sqrt{2011}=a;\sqrt{2012}=b\)
Theo đề, ta có: \(A=\dfrac{a^2}{b}+\dfrac{b^2}{a}=\dfrac{a^3+b^3}{ab}\)
B=a+b
\(A-B=\dfrac{a^3+b^3}{ab}-\left(a+b\right)=\dfrac{a^3+b^3-a^2b-ab^2}{ab}\)
\(=\dfrac{\left(a+b\right)\left(a^2-ab+b^2\right)-ab\left(a+b\right)}{ab}\)
\(=\dfrac{\left(a+b\right)\left(a-b\right)^2}{ab}>0\)
=>A>B
\(\dfrac{a}{b}=\dfrac{c}{d}\Rightarrow\dfrac{a}{c}=\dfrac{b}{d}=\dfrac{a+b}{c+d}\)
\(\Rightarrow\left(\dfrac{a+b}{c+d}\right)^{2012}=\dfrac{a^{2012}}{c^{2012}}=\dfrac{b^{2012}}{d^{2012}}=\dfrac{a^{2012}+b^{2012}}{c^{2012}+d^{2012}}\) (đpcm)
Lời giải:
$A=1-\frac{1}{2011}+1-\frac{1}{2012}+1+\frac{2}{2010}$
$=3+(\frac{1}{2010}-\frac{1}{2011})+(\frac{1}{2010}-\frac{1}{2012})$
$> 3+0+0+0=3$
Ta có đpcm.
Áp dụng tính chất tỉ lệ thức và dãy tỉ số bằng nhau ta có:
\(\frac{a+2011}{a-2011}=\frac{b+2012}{b-2012}\Rightarrow\frac{a+2011}{b+2012}=\frac{a-2011}{b-2012}=\frac{a+2011+a-2011}{b+2012+b-2012}=\frac{2a}{2b}=\frac{a}{b}\)
\(=\frac{a+2011-a}{b+2012-b}=\frac{2011}{2012}\)\(\Rightarrow\frac{a}{b}=\frac{2011}{2012}\Rightarrow\frac{a}{2011}=\frac{b}{2012}\)
\(\Rightarrowđpcm\)
Ta có : \(B=\dfrac{2011+2012}{2012+2013}=\dfrac{2011}{2012+2013}=\dfrac{2012}{2012+2013}\)
Mà : \(\dfrac{2011}{2012}>\dfrac{2011}{2012+2013}\)
\(\dfrac{2012}{2013}>\dfrac{2012}{2012+2013}\)
\(\Rightarrow \dfrac{2011}{2012}+\dfrac{2012}{2013}>\dfrac{2011}{2012+2013}+\dfrac{2012}{2012+2013}\)
\(\Rightarrow\dfrac{2011}{2012}+\dfrac{2012}{2013}>\dfrac{2011+2012}{2012+2013}\)
Vậy A > B
Ta có \(\sqrt{a^{2012}+2011}\le\dfrac{a^{2012}+2011+1}{2}\)
\(\Leftrightarrow\dfrac{a^{2012}+2012}{\sqrt{a^{2012}+2011}}\ge\dfrac{a^{2012}+2012}{\dfrac{a^{2012}+2012}{2}}=2\)
Dấu \("="\Leftrightarrow a^{2012}+2011=1\Leftrightarrow a\in\varnothing\)
Vậy dấu \("="\) ko xảy ra
\(\Rightarrow\dfrac{a^{2012}+2012}{\sqrt{a^{2012}+2011}}>2\)