K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

20 tháng 12 2017

Vì 3 tam giác này có 3 góc bằng nhau :

\(\Rightarrow\widehat{BAC}\times3=180\) độ

\(\Rightarrow\widehat{BAC}=60\) độ

\(\Rightarrow\widehat{ABD}=30\) độ

\(\Rightarrow\widehat{ABD}+\widehat{BAD}\) = 90 độ

\(\Rightarrow\Delta BAD\) ⊥ D

\(\Rightarrow BD\) \(\perp\) \(AC\)

Vì CE là tia phân giác của \(\widehat{BCA}\)

\(\Rightarrow\widehat{ECA}\) \(=30\) độ

\(\Rightarrow\widehat{EAC}+\widehat{ECA}=90\) độ

\(\Rightarrow\Delta AEC\perp E\)

\(\Rightarrow EC\perp AB\)

hiuhiuhiuhiu

24 tháng 12 2017

https://hoc24.vn//hoi-dap/question/455609.html

18 tháng 2 2023

a,Vì tam giác ABC đều => BD,CE vừa là tia phân giác vừa là đường cao=>BD vuông góc AC và CE vuông góc AB 

b, vì hai tia phân giác BD và CE cắt nhau tại O suy ra O là tâm tam giác ABC suy ra OA = OB = OC (tính chất)

c, ta có góc AOB + góc BOC + góc COA = 360 độ mà  AOB = BOC= COA Suy ra 3 AOB= 360 suy ra AOB = 120 vậy AOB=BOC=COA=120 

Bạn kham khảo link này nhé.

Kết quả tìm kiếm | Học trực tuyến

10 tháng 11 2019

ĐÂY LÀ KÍ HIỆU GÓC NHA (^)

Vì 3 tam giác này có 3 góc bằng nhau :

⇒BACˆ×3=180⇒BAC^×3=180 độ

⇒BACˆ=60⇒BAC^=60 độ

⇒ABDˆ=30⇒ABD^=30 độ

⇒ABDˆ+BADˆ⇒ABD^+BAD^ = 90 độ

⇒ΔBAD⇒ΔBAD ⊥ D

⇒BD⇒BD ⊥⊥ ACAC

Vì CE là tia phân giác của BCAˆBCA^

⇒ECAˆ⇒ECA^ =30=30 độ

⇒EACˆ+ECAˆ=90⇒EAC^+ECA^=90 độ

⇒ΔAEC⊥E⇒ΔAEC⊥E

⇒EC⊥AB

19 tháng 1 2018

có A = 60 độ (gt)

suy ra c+b=180-60=120

mà c1=1/2 c:b1=1/2 b  ( tích chất tia phân giác )

suy ra c1+b1=120:2=60

suy ra BOC = 180-60=120

B)

xét Tam giác BOE và BOF  bằng nhau theo ( cạnh góc cạnh)

suy ra OB là tia phân giác ủa EOF

C: có Phân giác Ce và BD cắt Nhau tại O 

mà AF cắt CE và BD tại O  suy ra AF LÀ  phân giác của góc BAC

từ đó suy ra  OD=OE=OF ( tích chất  của tia phân giác )

, hình thì m tự vẽ bố éo rảnh ngồi vẽ :))

19 tháng 1 2018

60° A C B D E O F H K 2 1 2 1

a) Ta có \(\widehat{B_1}=\widehat{B_2};\widehat{C_1}=\widehat{C_2}\Rightarrow\widehat{B_1}+\widehat{C_1}=\frac{\widehat{B}+\widehat{C}}{2}=\frac{180^o-\widehat{A}}{2}=\frac{180^o-60^o}{2}=60^o\)

Vậy thì \(\widehat{BOC}=180^o-60^o=120^o\)

b) Xét tam giác BEO và BFO có:

BE = BF (gt)

BO chung

\(\widehat{B_1}=\widehat{B_2}\)

\(\Rightarrow\Delta BEO=\Delta BFO\left(c-g-c\right)\)

\(\Rightarrow\widehat{BOE}=\widehat{BOF}\)   (Hai góc tương ứng)

Vậy OB là tia phân giác góc EOF.

c) Gọi K, H là chân đường cao hạ từ O xuống AB và AC

Do O là giao điểm của 3 đường phân giác nên OH = OK 

Ta có \(\widehat{EAD}+\widehat{EOD}=60^o+\widehat{BOC}=60^o+120^o=180^o\)  

\(\Rightarrow\widehat{AEO}+\widehat{ODK}=180^o\Rightarrow\widehat{OEH}=\widehat{ODK}\Rightarrow\widehat{HOE}=\widehat{KOD}\)

Vậy thì \(\Delta OEH=\Delta ODK\)   (Cạnh góc vuông - góc nhọn kề)

\(\Rightarrow OE=OD\)