cho tam giác ABC có 3 góc bằng nhau và 3 cạnh bằng nhau. Tia phân giác BD và CE cắt nhau tại O (D\(\in\)AC, E\(\in\)AB). CMR:
a. BD\(\perp\)AC, CE\(\perp\)AB
b. OA=OB=OC
c. Góc AOB=góc BOC =góc COA
=> số đo của mỗi góc đó
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a,Vì tam giác ABC đều => BD,CE vừa là tia phân giác vừa là đường cao=>BD vuông góc AC và CE vuông góc AB
b, vì hai tia phân giác BD và CE cắt nhau tại O suy ra O là tâm tam giác ABC suy ra OA = OB = OC (tính chất)
c, ta có góc AOB + góc BOC + góc COA = 360 độ mà AOB = BOC= COA Suy ra 3 AOB= 360 suy ra AOB = 120 vậy AOB=BOC=COA=120
Bạn kham khảo link này nhé.
Kết quả tìm kiếm | Học trực tuyến
ĐÂY LÀ KÍ HIỆU GÓC NHA (^)
Vì 3 tam giác này có 3 góc bằng nhau :
⇒BACˆ×3=180⇒BAC^×3=180 độ
⇒BACˆ=60⇒BAC^=60 độ
⇒ABDˆ=30⇒ABD^=30 độ
⇒ABDˆ+BADˆ⇒ABD^+BAD^ = 90 độ
⇒ΔBAD⇒ΔBAD ⊥ D
⇒BD⇒BD ⊥⊥ ACAC
Vì CE là tia phân giác của BCAˆBCA^
⇒ECAˆ⇒ECA^ =30=30 độ
⇒EACˆ+ECAˆ=90⇒EAC^+ECA^=90 độ
⇒ΔAEC⊥E⇒ΔAEC⊥E
⇒EC⊥AB
có A = 60 độ (gt)
suy ra c+b=180-60=120
mà c1=1/2 c:b1=1/2 b ( tích chất tia phân giác )
suy ra c1+b1=120:2=60
suy ra BOC = 180-60=120
B)
xét Tam giác BOE và BOF bằng nhau theo ( cạnh góc cạnh)
suy ra OB là tia phân giác ủa EOF
C: có Phân giác Ce và BD cắt Nhau tại O
mà AF cắt CE và BD tại O suy ra AF LÀ phân giác của góc BAC
từ đó suy ra OD=OE=OF ( tích chất của tia phân giác )
, hình thì m tự vẽ bố éo rảnh ngồi vẽ :))
a) Ta có \(\widehat{B_1}=\widehat{B_2};\widehat{C_1}=\widehat{C_2}\Rightarrow\widehat{B_1}+\widehat{C_1}=\frac{\widehat{B}+\widehat{C}}{2}=\frac{180^o-\widehat{A}}{2}=\frac{180^o-60^o}{2}=60^o\)
Vậy thì \(\widehat{BOC}=180^o-60^o=120^o\)
b) Xét tam giác BEO và BFO có:
BE = BF (gt)
BO chung
\(\widehat{B_1}=\widehat{B_2}\)
\(\Rightarrow\Delta BEO=\Delta BFO\left(c-g-c\right)\)
\(\Rightarrow\widehat{BOE}=\widehat{BOF}\) (Hai góc tương ứng)
Vậy OB là tia phân giác góc EOF.
c) Gọi K, H là chân đường cao hạ từ O xuống AB và AC
Do O là giao điểm của 3 đường phân giác nên OH = OK
Ta có \(\widehat{EAD}+\widehat{EOD}=60^o+\widehat{BOC}=60^o+120^o=180^o\)
\(\Rightarrow\widehat{AEO}+\widehat{ODK}=180^o\Rightarrow\widehat{OEH}=\widehat{ODK}\Rightarrow\widehat{HOE}=\widehat{KOD}\)
Vậy thì \(\Delta OEH=\Delta ODK\) (Cạnh góc vuông - góc nhọn kề)
\(\Rightarrow OE=OD\)
Vì 3 tam giác này có 3 góc bằng nhau :
\(\Rightarrow\widehat{BAC}\times3=180\) độ
\(\Rightarrow\widehat{BAC}=60\) độ
\(\Rightarrow\widehat{ABD}=30\) độ
\(\Rightarrow\widehat{ABD}+\widehat{BAD}\) = 90 độ
\(\Rightarrow\Delta BAD\) ⊥ D
\(\Rightarrow BD\) \(\perp\) \(AC\)
Vì CE là tia phân giác của \(\widehat{BCA}\)
\(\Rightarrow\widehat{ECA}\) \(=30\) độ
\(\Rightarrow\widehat{EAC}+\widehat{ECA}=90\) độ
\(\Rightarrow\Delta AEC\perp E\)
\(\Rightarrow EC\perp AB\)
https://hoc24.vn//hoi-dap/question/455609.html